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ABSTRACT
GPUs are renowned for their exceptional computational accelera-
tion capabilities achieved through massive parallelism. However,
utilizing GPUs for computation requires manual identification of
code regions suitable for offloading, data transfer management,
and synchronization. Recent advancements have capitalized on the
LLVM/OpenMP portable target offloading interface, elevating GPU
acceleration to new heights. This approach, known as the direct
GPU compilation, involves compiling the entire host application for
execution on the GPU, eliminating the need for explicit offloading
directives. However, direct GPU compilation is limited to the thread
parallelism a CPU application exposes, which is often not enough
to saturate a modern GPU.

This paper explores an alternative approach to enhance paral-
lelism by enabling ensemble execution. We introduce a proof-of-
concept implementation that maps each invocation of an appli-
cation on a different input to an individual team executed by the
same GPU kernel. Our enhanced GPU loader can read command
line arguments for different instances from a file to simplify the
usability. Through extensive evaluation using four benchmarks,
we observe up to 51X speedup for 64 instances. This demonstrate
the effectiveness of ensemble execution in improving parallelism
and optimizing GPU utilization for CPU programs compiled and
executed directly on the GPU.
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1 INTRODUCTION
GPUs have gained widespread recognition for their remarkable
ability to accelerate computations through massive parallelism. As
a result, leveraging GPUs for accelerating various applications has
become a prominent approach in high-performance computing
[2]. However, achieving optimal GPU utilization requires careful
identification of code regions that should be executed on the device,
efficient memory transfers, and proper synchronization [9].

Recent advancements in compiler technology and programming
frameworks have facilitated GPU acceleration by providing portable
target offloading interfaces. One notable example is a recent work
[26] that takes advantage of LLVM/OpenMP framework, which
offers a flexible approach for offloading computations to GPUs. This
approach, known as the direct GPU compilation scheme, involves
compiling the entire host application for the GPU and executing it
on the device, thereby eliminating the need for explicit offloading
directives. This scheme simplifies the development process and
enables transparent GPU acceleration.

However, the direct GPU compilation scheme has revealed sig-
nificant performance limitations due to the insufficient parallelism
of single-team execution, which is essential to ensure compliance
with OpenMP semantics. This limitation hampers the ability to
fully exploit the computational power of GPUs and achieve optimal
performance. An extended work [27] has explored the approach of
launching a parallel kernel when a parallel region is encountered if
it is semantically allowed.

In contrast, ensemble-based simulations are extensively em-
ployed in high-performance computing to compute multiple in-
dividual simulation trajectories and analyze statistical properties
across them [3, 4, 10, 12]. In this paper, we explore the concept of en-
semble execution as a means to enhance parallelism and maximize
GPU utilization. Ensemble execution involves running multiple
instances of an application concurrently within the same GPU
kernel launch. The primary goal of this study is to evaluate the
effectiveness of ensemble execution in enhancing parallelism and
GPU utilization. We present a proof-of-concept implementation
that demonstrates the feasibility of mapping application instances
to individual teams and provides an enhanced loader to handle
command line arguments for different instances. We evaluate the
performance using a set of benchmarks and analyze the scaling
behavior under varying numbers of concurrent instances.

The rest of the paper is organized as follows. In Section 2, we
provide an overview of the direct GPU compilation scheme. Sec-
tion 3 details the methodology and implementation of ensemble
execution. Section 4 presents the evaluation results and discusses
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the observed performance trends. We review related works in Sec-
tion 5. Finally, Section 6 concludes the paper and outlines future
directions for enhancing ensemble execution.

2 BACKGROUND
OpenMP 4.0 introduced the target construct, which enables the
execution of code regions on target devices like GPUs [6] and
FPGAs [16]. To illustrate, Figure 1 depicts an example of CUDA
code and its equivalent OpenMP version. Alongside the target
construct, OpenMP provides the declare target directive, which
specifies that all associated variables and functions should bemapped
onto target devices, making them usable in device code [24]. More-
over, the device_type(nohost) clause on a declare target con-
struct forces the compiler not to generate host versions of the
enclosed variables and functions.

__device__ int g;

__device__ void foo();

__global__ void baz() { foo(); }

void bar() {

baz<<<...>>>();

}

(a) An example of CUDA code. The function baz is a kernel that is
the entry point of a GPU program and can be launched from host.
The function foo is a device function that can be called in a kernel.

#pragma omp begin declare target device_type(nohost)

int g;

void foo();

#pragma omp end declare target

void bar() {

// The following region will be outlined to a new

// function and will be launched from the host,

// similar to the function baz in the CUDA example.

#pragma omp target

{ foo(); }

}

(b) Corresponding OpenMP code using target offloading to Fig-
ure 1a. Even though there is no explicit kernel specified by users,
an OpenMP compiler will outline the target region and generate a
kernel implicitly.

Figure 1: An example of a CUDA code and the corresponding
OpenMP offload.

While this approach provides a simpler programming model
than traditional CUDA or OpenCL, it still requires users to wrap the
code with the target construct. In particular, users need to identify
the regions of code that would benefit from GPU acceleration and
explicitly mark them with the target construct.

The proposed approach by Tian et al. [26] enables the compila-
tion of an existing host application for GPU execution with minimal
modification to the user code by leveraging the portable target of-
floading interface provided by LLVM/OpenMP. Users can provide
simple stub code to delegate function calls to the host using the host
remote procedure call (RPC) framework for functions that can not
be executed directly on a GPU. Later, the approach was extended
by augmenting the compiler with a custom link-time optimization
pass, which can automatically generate RPC calls without the need
for stub code from users, and expand source parallelism to the entire
GPU device [27].

compile time / runtime
extended LLVM parts

ç
legacy CPU
app. source

D
main wrapper

D
user wrapper

{
Clang with custom link-
time-optimizations

D
partial libc

Ö
exec.

¾
GPU

D
offload lib.

Û
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Figure 2: Overview of the compilation and execution path of
the direct GPU compilation framework introduced by Tian
et al. [26] and the extended work [27]. The figure is taken
from the work [27].

The compilation and execution path of this approach is illustrated
in Fig. 2. In the following we will briefly introduce the compilation
of the direct GPU compilation scheme and execution model.

2.1 Device Code Representation
The direct compilation framework facilitates executing the entire
program on the GPU by marking all user code associated with
the declare target directive, essentially prepending a begin
declare target device_type(nohost) before any user source
file. The framework offers a user wrapper header (shown in Fig-
ure 3), which can be pre-included using clang’s -include com-
mand line option when compiling user code.

2.2 Loader
The GPU execution still follows a “host-centric” approach where
the execution of a “GPU program” must be initiated from the host.
Traditionally, the main function in the host code has been the entry
point for user applications. However, since the entire user code
is now considered device code, a new entry point for the host
code is needed. The direct compilation framework provides a main
wrapper (also depicted in Figure 2) that acts as the new host entry
point. The main wrapper first maps all program arguments to the
device so that the user code can access them and then invokes
the user’s main function. To avoid conflicts with the existing main
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function, the user’s main function is renamed to __user_main (as
illustrated in Figure 3). In the extension work [23], the user’s main
function is canonicalized to the form int main(int argc, char
*argv[]); and renamed accordingly. The new host entry point
must be compiled and linked with all other user source files into
the executable by the user.

#pragma omp begin declare target device_type(nohost)

int main(int, char *[]) asm("__user_main");

Figure 3: User wrapper header to take all user code as device
code and rename main function to __user_main.

2.3 Single and Multiple Teams Execution
When a target region executes, it is executed by the initial thread
sequentially. A teams construct is usually used to create a league of
teams together with the target region where each team starts exe-
cution independently with its own initial thread. When a parallel
construct is encountered, the enclosed region is executed by the
encountering thread as well as the new threads associated with the
respective team.

In scenarios where there are multiple teams (represented by 𝑁 ),
the body of the construct will be executed by all 𝑁 initial threads.
However, in most cases, the user code, excluding the OpenMP paral-
lel regions, is typically designed to run in a single-threaded manner.
To maintain consistency with the behavior of host execution, the
approach introduced by Tian et al. [26] supports only single team
execution. In LLVM OpenMP, an OpenMP team is mapped to a
thread block (or wavefront for AMD GPU). Each thread block has
a limited number of threads that can be used, such as 1024 for
NVIDIA GPUs. Therefore, the maximum number of threads that
can be utilized is constrained by the total number available in the
thread block. This limitation significantly impacts performance.

In the extension work [27], this limitation is addressed by launch-
ing a new kernel with multiple teams if the parallel region allows
for it based on semantic considerations. By enabling multiple teams
in parallel regions, the performance of these regions can be signifi-
cantly improved.

3 IMPLEMENTATION
As discussed in Section 2.3, the restriction to single team execution
significantly hinders performance. Although multi-team execu-
tion, as presented in [27], can improve performance, it may not
be applicable in cases where the parallel region does not permit it
semantically.

An alternative approach to fully utilize the capabilities of the
GPU is to concurrently executemultiple instances of the application,
each with a different input. This allows for parallel processing of
independent tasks. In this section, we will introduce our enhanced
loader, which builds upon the loader discussed in Section 2.2, to
support ensemble execution. This enhancement enables the exe-
cution of multiple instances simultaneously, harnessing the full
potential of the GPU for improved performance and efficiency.

3.1 Instance Mapping
Similar to previous work [26], we adopt a mapping strategy where
each application instance is mapped to a team. In our enhanced
loader, we utilize the target teams distribute construct to dis-
tribute the instances across multiple teams. The capability of our
enhanced loader to support the invocation of multiple instances is
demonstrated in Figure 4.

std::vector<std::string> StringCache;

std::vector<int> Argc;

std::vector<std::vector<char *>> Argv;

/* Construct arguments from argument file */

for (auto &Line : ArgumentFile) {

Argv.emplace_back();

auto &AV = Argv.back();

AV.push_back(argv[0]);

for (auto &Arg : Line.split(' ')) {

StringCache.push_back(Arg);

AV.push_back(StringCache.back().c_str());

}

Argc.push_back(AV.size());

}

#pragma omp target teams distribute num_teams(N) \

thread_limit(T) map(from:Ret[:NI])

for (int I = 0; I < NI; ++I) {

Ret[I] = __user_main(Argc[I], &Argv[I][0]);

}

Figure 4: The invocation of NI instances of application with
N teams, each of which can utilize up to T threads. Argc[I]
and Argv[I] is the corresponding command line arguments
of each instance.

The number of instances that can execute concurrently is limited
by the number of teams available. However, there are alternative ap-
proaches to increase concurrency without introducing more teams.
Both NVIDIA and AMD GPUs support three-dimensional thread
blocks, while LLVM OpenMP currently uses only one dimension.
By mapping M instances into a single team (thread block) at different
dimensions, we can increase concurrency. In this mapping scheme,
the size of the thread block becomes (N/M,M,1) when the thread
limit is N. This approach allows for a reduction in the parallelism
of each individual instance while improving overall concurrency.
This mapping strategy is particularly beneficial for applications
with limited parallelism. However, due to current limitations in
the LLVM OpenMP implementation, this mapping scheme is not
currently supported. As a result, we have not included it in our
proof-of-concept implementation. Nonetheless, from a conceptual
perspective, there are no difficulties in implementing this map-
ping scheme, and it can be explored in future enhancements of our
approach.
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3.2 Command Line Arguments
In previous works [23, 26, 27], the loader simply passed all com-
mand line arguments to the user’s main function. However, in our
research, we have extended the functionality of the loader to sup-
port ensembles of execution.

In our proof-of-concept implementation, the loader now accepts
three command line arguments to enable ensemble execution:

• -f <file>: This argument specifies the command line argu-
ments file. Each line in the file contains the arguments for
each application instance.

• -n <num instances>: This argument specifies the number
of instances to be launched simultaneously.

• -t <thread limit>: This argument specifies the maximum
number of threads that each instance can utilize. However,
the actual number of threads used by each instance may be
lower due to hardware resource limitations.

An example of using our GPU ensembler to run four instances of
a user application concurrently on a GPU is illustrated in Figure 5.
This new capability allows for efficient parallel execution ofmultiple
application instances, maximizing GPU utilization and potentially
improving overall performance.

$ ./user_app_host -a 1 -b -c data-1.bin

$ ./user_app_host -a 2 -b -c data-2.bin

$ ./user_app_host -a 1 -b -c data-3.bin

$ ./user_app_host -a 3 -b -c data-4.bin

(a) An example of running the original user application four times
on the host with different command line arguments.

-a 1 -b -c data-1.bin

-a 2 -b -c data-2.bin

-a 1 -b -c data-3.bin

-a 3 -b -c data-4.bin

(b) The content of command line argument file arguments.txt.

$ ./user_app_gpu -f arguments.txt -n 4 -t 128

(c) Executing the GPU version of the user application using the
enhanced loader, where we simultaneously launch four application
instances capable of utilizing up to 128 threads each.

Figure 5: An example of ensembling execution.

In our future work, we have plans to design a script language
specifically for the command line argument file. This script lan-
guage will enable the generation of command line arguments for
each instance dynamically, providing greater flexibility.

3.3 Limitation
Runningmultiple instances of an applicationwithin the same kernel
launch can pose challenges to maintaining the natural isolation be-
tween instances. This can be particularly problematic when shared
global variables are involved, as it can introduce the possibility
of data races and compromise the correctness of the application.
To address this issue, a possible solution is to develop a compiler

transformation that relocates global variables to shared memory,
which is team-local on a GPU.

4 EVALUATION
In this section, we present the evaluation of our approach. We begin
by introducing the benchmarks that were used in our experiments.
Next, we provide details about the experimental configuration,
including the hardware and software setup. Finally, we present the
results of our evaluation and provide an analysis of the findings.

4.1 Benchmarks
We conducted our evaluation using two proxy applications, XS-
Bench [29] and RSBench [28], as well as two microbenchmarks
from the HeCBench suite [13].

XSBench and RSBench serve as proxies for the Open Monte
Carlo (OpenMC) project, specifically focusing on the computation
of continuous energy macroscopic neutron cross-section lookup
in neutron transport simulations. XSBench represents a memory-
bound kernel from the OpenMC project, while RSBench provides
an alternative implementation that is compute-bound.

Additionally, we selected two benchmarks, AMGmk and Page-
Rank, from HeCBench, a GitHub repository housing a collec-
tion of heterogeneous computing benchmarks, for our evaluation.
AMGmk measures the performance of the relax kernel from the
original AMGmk proxy application [14]. This benchmark focuses
solely on the relax kernel’s execution. Page-Rank, on the other
hand, implements the page-rank algorithm for graphs, specifically
measuring the propagation step of the algorithm.

4.2 Configuration
Our system consisted of an NVIDIA A100 Tensor Core GPU (40GB)
with AMD EPYC 7532 processors (32 cores with hyper-threading
disabled) and 256 GB DDR4 RAM. We used CUDA 11.8.0 and com-
piled all benchmarks with -O3.

We performed runs using different numbers of instances for
each benchmark: 1, 2, 4, 8, 16, 32, and 64 instances. The number of
teams was set equal to the number of instances, ensuring that each
team executed a single instance. Due to memory limitations, we
did not utilize a larger number of instances in the experiment. We
selected two thread limits: 32 and 1024. The limit of 32 corresponds
to the size of a warp, which is the smallest unit of the hardware
scheduler. The limit of 1024 represents the maximum number of
threads that can be utilized by the hardware. It is important to note
that the thread limit serves as an upper bound for the number of
threads a kernel can utilize. In practice, a kernel may not be able to
fully utilize the maximum thread count. Therefore, when we refer
to 1024 as the thread limit, it implies that the kernel can utilize
as many threads as it can effectively use, while 32 represents the
minimum number of threads a kernel can utilize.

4.3 Results and Analysis
Figure 6 illustrates the relative speedup of each benchmark with
varying numbers of instances and different thread limits. The speedup
is computed using the formula𝑇1 × 𝑁 /𝑇𝑁 , where𝑇1 represents the
time taken for executing a single instance, 𝑁 denotes the number
of instances, and 𝑇𝑁 represents the time taken for executing 𝑁



Maximizing Parallelism and GPU Utilization For Direct GPU Compilation Through Ensemble Execution ICPP-W 2023, August 7–10, 2023, Salt Lake City, UT, USA

instances concurrently. The line “Linear” in the figure corresponds
to the upper bound of the speedup. It indicates that if we have 𝑁
instances executing simultaneously, each instance would have the
same execution time as when only a single instance is running. In
other words, the speedup would be perfectly linear if the execution
time scales linearly with the number of instances.

As observed in the results, all the benchmarks exhibited a “sub-
linear” scaling behavior, particularly evident when the number of
instances was 16 or less. As the number of instances increased,
the scaling gap became more pronounced, particularly notable in
the case of AMGmk with a thread limit of 1024. When executing
parallel regions, global memory access within a single thread block
tends to be coalesced due to the contiguous nature of the accesses.
However, unlike the case of a common kernel execution, in our
GPU assembling execution, threads from different thread blocks are
unlikely to exhibit coalesced memory accesses since they process
data allocated in different heap allocations, which are typically
non-contiguous. This scenario does not maximize the utilization
of the global memory bandwidth. Due to memory limitations, we
were only able to show the results for two and four instances in
the case of Page-Rank.

5 RELATEDWORKS
Previous research has delved into the execution of host programs
on GPUs, exploring various techniques and optimizations. Pakin
et al. [21] introduced a reverse-acceleration model where accelera-
tors orchestrate computations, offloading non-acceleratable work
to general-purpose processors. Jablin et al. [11] proposed a fully
automatic system for managing and optimizing CPU-GPU commu-
nication, encompassing a runtime library and compiler transforma-
tions. Silberstein et al. [22] proposed direct access to the host’s file
system from GPU code and implemented an RPC protocol for CPU-
GPU data transfers. Mikushin et al. [17] presented a parallelization
framework that detects parallelism and generates target code for
both X86 CPUs and NVIDIA GPUs, employing a foreign function
interface for executing functions on the host. Damschen et al. [7]
investigated transparent acceleration of binary applications using
heterogeneous computing resources without manual porting or
developer-provided hints. Noack et al. [18] discussed the built-in
reverse-offloading mechanism in the low-level Vector Engine Of-
floading library. Matsumura et al. [15] introduced an automated
stencil framework that transforms and optimizes stencil patterns
in C source code to generate corresponding CUDA code. Tian et al.
[26] explored running the entire host program on a GPU using
OpenMP target offloading, augmenting the compiler with a custom
link-time optimization pass to generate RPC calls automatically
and expand source parallelism to the GPU device. Subsequent work
[27] extended this approach in the form of compiler enhancements
and source parallelism expansion without requiring stub code from
users. Tian et al. [23] explored the limit of executing generic code
on GPUs using the direct GPU compilation scheme.

Several notable works have explored the practical applications
and advancements in ensemble execution. Jiang et al. [12] developed
a pulling-based workflow execution system tailored for efficient ex-
ecution of large-scale scientific workflow ensembles in public cloud
environments, specifically Amazon EC2. Balasubramanian et al.

[4] introduced the ensemble toolkit, a comprehensive framework
designed to facilitate the dynamic and efficient execution of en-
sembles on heterogeneous computing resources. Balasubramanian
et al. [3] implemented a scalable and adaptive ensemble execution
system on top of the ensemble toolkit.

Additionally, researchers have focused on compiler and runtime
optimization for OpenMP after the introduction of target offloading
in OpenMP 4.0. Bertolli et al. [5, 6] enabled OpenMP offloading to
GPUs in LLVM, while Flang, the PGI Fortran front-end, supports
OpenMP offloading through the LLVM OpenMP runtime [19]. An-
tão et al. [1] introduced front-end-based optimizations for NVIDIA
GPUs, reducing register usage and minimizing idle threads. Do-
erfert et al. [8] presented the TRegion interface to enable more
kernels to execute in SPMD mode. Tian et al. [25] introduced run-
time support for concurrent execution of OpenMP target tasks.
Yviquel et al. [30] developed a framework for using the OpenMP
programming model in distributed memory environments, combin-
ing OpenMP directives and MPI communication. Huber et al. [9]
developed OpenMP-aware program analyses and optimizations for
efficient execution of CPU-centric parallelism on GPUs. Ozen and
Wolfe [20] demonstrated the implementation of the loop directive
on NVIDIA GPUs in NVIDIA’s compiler.

6 CONCLUSION AND FUTUREWORK
In this study, we have explored ensemble execution as a means to
enhance parallelism and maximize GPU utilization. By mapping
each instance of an application to an individual team and leveraging
an enhanced loader capable of handling command line arguments
for different instances, we have demonstrated the effectiveness of
ensemble execution in increasing parallelism. Through our proof-
of-concept implementation and evaluation of four benchmarks, we
observed up to 51X speedup for 64 instances. These results highlight
the potential of ensemble execution to improve parallelism and
exploit the capabilities of modern GPUs.

Looking ahead, our future research will focus on further opti-
mizing the mapping of application instances to achieve even better
scalability. We will explore advanced mapping strategies and inves-
tigate techniques to dynamically generate command line arguments
using a script language, enabling more flexibility and convenience
in ensemble execution.
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