
Implementing OpenMP’s SIMD Directive in LLVM’s GPU
Runtime

Eric Wright
efwright@udel.edu

University of Delaware
Newark, Delaware, USA

Johannes Doerfert
jdoerfert@llnl.gov

Lawrence Livermore National
Laboratory

Livermore, California, USA

Shilei Tian
shilei.tian@stonybrook.edu
Stony Brook University

Stony Brook, New York, USA

Barbara Chapman
barbara.chapman@stonybrook.edu

Stony Brook University
Stony Brook, New York, USA

Sunita Chandrasekaran
schandra@udel.edu

University of Delaware
Newark, Delaware, USA

ABSTRACT
GPUs support three levels of parallelism: thread blocks, warps (or
wavefronts) within a block, and threads within a warp. Some GPU
programming models allow the use of all three of these levels, such
as OpenMP offloading with the teams, parallel, and simd directives.
However LLVM/OpenMP does not support simd and only uses two
levels, thread blocks and all threads within a block. For codes with
three explicit layers of parallelism this can decrease performance
and potentially require restructuring of the application. In this work
we present our design and implementation of the OpenMP simd
directive in LLVM’s OpenMP GPU runtime, which includes both
CPU-centric and GPU-centric execution models. We evaluate our
prototype using kernels and a few proxy applications showing a
performance improvement ranging from 1.3x to 3.5x depending on
the benefit the kernels receives from such an optimization. Thus,
this work enables real-world applications with three explicit layers
of parallelism to expose to better exploit the full benefits of GPU
architecture.

CCS CONCEPTS
• Computing methodologies → Parallel programming lan-
guages; • Software and its engineering → Runtime environ-
ments; Source code generation.

KEYWORDS
OpenMP offloading, LLVM, SIMD, GPU

ACM Reference Format:
Eric Wright, Johannes Doerfert, Shilei Tian, Barbara Chapman, and Sunita
Chandrasekaran. 2023. Implementing OpenMP’s SIMD Directive in LLVM’s
GPU Runtime. In 52nd International Conference on Parallel Processing (ICPP
2023), August 7–10, 2023, Salt Lake City, UT, USA. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3605573.3605640

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
ICPP ’23, August 07–11, 2023, Salt Lake City, Utah, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0843-5/23/08. . . $15.00
https://doi.org/10.1145/3605573.3605640

1 INTRODUCTION
There are several ways to program GPUs: Using GPU-enabled li-
braries such as MAGMA [14] or AmgX [21]. Using a kernel-based
programming language such as CUDA or HIP. Or, using a directive-
based language such as OpenACC and OpenMP. While direct GPU
programming provides the user with control and conceptual means
to utilize the GPU to the fullest, implementations, especially for
portable directive-based languages, have a hard job translating
programming language semantics to the device. To provide full
language support as early as possible, it is not uncommon that
features are therefore implemented in a “conservative” way, e.g.,
non-observable parts are ignored. Filling such “implementation
holes” becomes increasingly important as growing heterogeneity
calls for portable programming models while efficient use of com-
plex devices requires accurate low-level control. In this work we
will look at OpenMP offloading by extending the LLVM/OpenMP
GPU implementation with a third level of parallelism that can be
controlled by the user.

OpenMP has provided target directives for GPU programming
since version 4.0. Further, the OpenMP standard provides directives
to mark three conceptually different kinds of parallelism that are
often thought of as a hierarchy: The teams directive spawns a
league of teams, each with one initial (main) thread. In the absence
of a teams directive, e.g., in most host codes, there is one implicit
team started at the program beginning. The teams directive is often
paired with the distribute directive which splits the iterations of
associated loops across teams. Next, the parallel directive creates
a team of threads. The parallel directive is often paired with the
for directive which splits the iterations of associated loops across
the threads in the team. Lastly, the simd directive specifies that
the associated loop iterations can be executed in lockstep, e.g., via
vector instructions.

These parallel levels are not unique to OpenMP as other lan-
guages provide equivalent concepts. OpenACC [1] uses “gang”,
“worker”, and “vector” directives, Kokkos [15] uses “team”, “thread”,
and “vector”, and alpaka [31] uses “grid”, “blocks”, and “threads”.
The underlying reason all these programming models provide these
levels can be found in the (early) GPU architecture. NVIDIA GPUs
provide the user with thread blocks onto which “gangs”, “teams”, or
"grids" are mapped. Each thread block contains warps onto which
“workers“, “threads“, or "blocks" are mapped. The lanes in a warp

https://orcid.org/1234-5678-9012
https://orcid.org/0000-0001-7870-8963
https://orcid.org/0000-0001-6468-6839
https://orcid.org/0000-0001-8449-8579
https://doi.org/10.1145/3605573.3605640
https://doi.org/10.1145/3605573.3605640

ICPP ’23, August 07–11, 2023, Salt Lake City, Utah, USA Trovato and Tobin, et al.

(used to) be executed in lockstep fashion which matches the idea
of “vector” execution.

Since it is harder to manage more layers of parallelism it is
often the case that the innermost vector level is simply folded into
the thread layer. In this mode each warp lane is associated with
a thread and the threads use vector length one. This embedding
is beneficial if the user only utilizes two parallel levels but most
(reg. Section 2) OpenMP implementations eliminate the SIMD layer
unconditionally. For codes with three explicit layers of parallelism
this can decrease performance and potentially require restructuring
of the application. The performance penalty can be significant if
the thread level does not provide enough parallelism, or if there is
high divergence between threads. Similarly, performance suffers
if data access patterns are neither uniform nor consecutive with
regards to worksharing loops (#pragma omp for).

In this work we will discuss the complexities and opportunities
of a third level of parallelism in the LLVM/OpenMP GPU runtime.
We describe how synchronization, data management and the GPU
thread execution need to be adjusted to support all three levels of
the host-centric OpenMP execution model.
The contributions of this work include:

• An extended LLVM/OpenMP GPU runtime library with sup-
port for three distinct levels of parallelism.

• Lowering of the OpenMP simd directive into control code
that employs multiple warp lanes for concurrent execution
of the loop iterations.

• Support for two conceptually different execution modes:
generic-SIMD and SPMD-SIMD. The former matches the
CPU model in which vector lanes are inactive if not used
while the latter is aligned with the GPU model in which all
warp lanes are active (almost) all of the time.

• An evaluation of our prototype on small kernels as well as
HPC proxy applications that mirror real-world science codes.

Known limitations are:
• Our prototype supports NVIDIA GPUs at this point. The gap
towards AMD GPU support is discussed in detail.

• Due to the non-availability of simd support by OpenMP
offloading compilers the selection of existing codes with
three levels of parallelism is quite limited.

• Our implementation cannot yet automatically translate generic-
SIMD code into SPMD-SIMD code but the conceptual opti-
mization is still described.

2 RELATEDWORK
OpenMP has supported GPU offloading since the 4.0 standard with
the inclusion of new target and target data directives, and has
been extended and improved in subsequent OpenMP versions. User
experiences of applying OpenMP target offloading can be found in
some of the recent work including using the SPEChpc2021 bench-
marking suite [7], other applications including HPGMG [10], min-
iMD [23], UK mini-apps [20], LULESH [18], among others. Work
in [9, 24] discusses at length experiences gained and practices
adopted from OpenMP hackathons when applying offloading fea-
tures on HPC applications and mini-apps based on different com-
putational motifs (BerkeleyGW, WDMApp/XGC, GAMESS, GESTS,
and GridMini) targeting heterogeneous systems.

The OpenMP offloading support for GPUs in LLVM can be traced
back to the two works discussed in [4, 5]. The (PGI) Fortran front-
end, known as Flang, supported OpenMP offloading via the LLVM
OpenMP runtime [22]. Since then, researchers have been working
on compiler and runtime optimization for LLVM OpenMP. The first
front-end-based optimizations for NVIDIA GPUs that can avoid
idle threads and reduce register usage was introduced in [3]. Work
in [11] presented the TRegion interface which delays the discovery
of SPMD regions to compiler middle end, contrary to the front-end
based approach used before, which can support more kernels to
execute in SPMD mode. Runtime support for concurrent execution
of OpenMP target tasks was introduced in [26]. Results in [16]
discusses OpenMP-aware program analyses and optimizations that
allow efficient execution of the generic, CPU-centric parallelism
model provided by OpenMP on GPUs. A co-design methodology is
presented in [12] for optimizing applications using a specifically
crafted OpenMP GPU runtime inducing near-zero overhead in most
cases.

There also exists several works describing implementations of
SIMD parallelism within OpenMP for CPU-based architectures. An
extension of OpenMP to generate explicit SIMD instructions is de-
scribed in [6]. Early implementations of a possible simd directive
within OpenMP is explored in [19] and [8]. The SIMD instruction
generation in various compilers, including Clang/OpenMP, is ana-
lyzed in [29]. An OpenMP SIMD implementation of the VASP code
is described in [28].

3 BACKGROUND
OpenMP offloading utilizes a host-device execution model where
the host (CPU) schedules and synchronizes target tasks, in the
form of kernels, and handles memory allocation and movement
between the host and target devices (e.g. GPUs). Computational
kernels are executed on the device by launching a league of teams.
Each team has a main thread that will begin executing the code
region contained by the teams directive. Additional worker threads
can be spawned by using the parallel directive. There are three
worksharing constructs: distribute, for and simd. distribute
schedules loop iterations across the league of teams, for schedules
loop iterations across threads within a team and simd uses single
instruction multiple data (SIMD) parallelism for the loop.

GPU execution models utilize a similar structure with multiple
streaming multiprocessors (SM), each containing several parallel
work units (warps for NVIDIA GPUs and wavefronts for AMD
GPUs) that are able to execute simultaneously. A simple mapping
of the OpenMP model to GPU hardware is a team per each SM, and
threads within the team to hardware threads within the SM. An
example mapping is shown in Fig. 1.

The simd construct specifies that the attached loop should be
executed using SIMD parallelism. For GPUs this is typically done
using single instruction, multiple thread (SIMT) parallelism, mean-
ing that multiple threads within a work unit execute the same
instruction. This means that in terms of GPU offloading a simd
loop should be executed in parallel by a set of adjacent threads. We
can achieve this by separating the threads in each team into distinct
groups. These SIMD groups will contain a single main thread and

Implementing OpenMP’s SIMD Directive in LLVM’s GPU Runtime ICPP ’23, August 07–11, 2023, Salt Lake City, Utah, USA

streaming multi-
processor (SM)

global
memory

shared
memory

team main
(1×)
parallel worker
(2×)
simd worker
(9×)

thread
local mem-
ory / regis-
ters

league of teams

team of threads
+ SIMD lanes

Figure 1: Simplified mapping of the OpenMP programming model to the GPU.
Top row: Outermost parallelism across streaming multiprocessors (SMs) onto
which OpenMP teams are mapped. All threads on this level share the global
memory. Middle row: A single SM corresponding to a team of threads (team
main + parallel workers) and, through this work, also SIMD vector lanes (simd
workers) in OpenMP. Both shared and global memory are accessible by these
threads. Bottom row: A single GPU/OpenMP thread which has exclusive access
to local memory and registers. Adapted from Fig. 2 from [16]

multiple workers. The main thread executes parallel regions and
all threads in the group execute simd loops.

3.1 OpenMP "Generic" CPU-centric Execution
Model

The OpenMP programming model is a CPU-centric model that
allows for sequential and parallel regions to be used interchangeably.
This aligns well with a CPU execution where alternating between
single-threaded execution and spawning additional threads is fairly
easy. However, the GPU execution model generally requires all
threads to begin execution at the start of the kernel and stay active
until termination. In a kernel-language, sequential regions of code
would require guarding to assure that only a single thread executes
them, and any side-effects created during that region need to be
communicated to other threads.

Prior work [5] discusses several problems in creating a portable
solution to this in LLVM/Clang. In the case of parallel regions ex-
isting within branching if/then statements all threads will need
to handle all potential paths that could be taken to ensure that
all threads reach the correct parallel region. Handling the thread
guarding needed for branching paths require extensive code gener-
ation, which is antithetical to Clang’s design, and limits portability
to other compilers.

An implementation that utilizes a state machine where threads
alternate between idle, during sequential regions, and active, during
parallel regions is described in [5]. A single thread is designated as
the team main thread and will run the user code. All other threads
are considered as worker threads and will enter the state machine
where they will encounter a thread barrier and become idle until the

main thread encounters a parallel region. This solves the problem
of branching paths since only one thread needs to traverse the
branching statements. When a parallel region is encountered some
variables may need to be communicated to other threads if they
are side-effects from the sequential code. The main thread will
specify which parallel region was encountered before completing
the thread barrier, signaling to the workers that they should become
active and begin executing the parallel region. This implementation
is what is currently used in LLVM/OpenMP.

3.2 OpenMP "SPMD" GPU-centric Execution
Model

Work in [27] introduces an execution mode in the IBM XL C/C++
compiler that avoids the generic state machine when all threads
can execute in parallel. This new mode is referred to as single
programmultiple data (SPMD)mode and has since been upstreamed
into the LLVM/Clang. The key characteristic of SPMD mode is the
assertion that all threads can safely execute the target region and
will encounter the same parallel regions and any sequential regions
of code will not produce side-effects. The simplest case for when
SPMD is applicable is when all affected OpenMP regions are tightly
nested, since this means there is no sequential code between the
parallel regions. This allows OpenMP to behave similarly to GPU
kernel-languages where all threads are active at the beginning of
the kernel.

SPMD mode is further extended in [16] to be applicable to a
larger variety of codes by introducing thread guarding of sequen-
tial code regions. The work introduces an inter-procedural analysis
at the LLVM IR level to check sequential regions for potential side-
effects that can be eliminated using thread guarding and variable
broadcasting. If these guarded regions create values needed out-
side of the region, then these values would be broadcasted to the
other threads. The SPMDization of these codes avoid the use of the
generic state machine at the cost of additional synchronization in
the guarded regions and data broadcasting.

4 LLVM CODE GENERATION FOR OPENMP
LOOPS

This section will explain our methodology for generating LLVM
IR for handling OpenMP worksharing loops, and the additions re-
quired specifically for simd loops. This code generation isolates
the bodies of loops into “loop tasks,” allowing these tasks to be
passed as variables into LLVM’s GPU runtime which then facili-
tates scheduling of these tasks on the appropriate threads. Such a
method removes the burden of intensive parallel code generation
and instead focuses on a more robust runtime library for handling
GPU parallel tasks.

4.1 Interfacing with the GPU Runtime Through
the OMP IR Builder

LLVM’s OpenMP IR Builder is used to generate OpenMP target code
and to interface with the LLVM/OpenMP runtime library. This tool
is designed to be front-end independent and allows for a generalized
approach to creating parallelism with OpenMP without requiring a
compiler to do extensive parallel code generation. A compiler may

ICPP ’23, August 07–11, 2023, Salt Lake City, Utah, USA Trovato and Tobin, et al.

interfacewith theOpenMP IR Builder by creating callback functions,
which handle certain parts of the code generation while the IR
Builder will generate the code needed for OpenMP parallelism,
including runtime library function calls.

We have added new functions to the OpenMP IR Builder to
generate code for OpenMP worksharing loops. This requires two
callback functions: 1) to generate the trip count of the loop, and 2)
to generate the body of the loop. The generated loop body will later
be isolated and moved into a separate function in a process called
outlining, which allows the body to be passed into the OpenMP
runtime by using the outlined function as a pointer. This function
represents the task that a single thread would do to execute a single
iteration of the loop. Then the runtimewill handle work distribution
across threads and ensure that all iterations are executed.

Since the outlined function may reference variables that are no
longer in the correct scope, these variables must be passed to the
function as arguments. They are aggregated into a structure and
passed as a singular payload to the outlined function. The payload
is packed before the runtime function call and unpacked within
the outlined function. Special consideration for these variables is
needed for simd loops, since the generic execution mode requires
the main thread to communicate these variables to the worker
threads. In this case any variable used within the outlined region
needs to exist in either shared or global memory such that it is
accessible by all threads. During the outlining if any variables in the
payload are local allocations from the encompassing parallel region,
then those allocations are globalized [16], and the corresponding
memory is deallocated at the end of the parallel region.

4.2 OpenMPWorksharing Loops in Clang
We have altered Clang’s code generation for OpenMP simd loops
to instead use our new function in the OpenMP IR Builder. The
two key requirements that need to be met to create a simd loop is a
callback function to generate LLVM IR for both the trip count of the
loop and the body of the loop. Clang’s OpenMPSimdDirective class
is used to represent the OpenMP simd directive. Since this class is
a loop directive it contains an OMPCanonicalLoop node as one of
its children. The OMPCanonicalLoop has some built-in methods
that are particularly useful for determining the trip count of the
loop as well as resolving the loop variable.

The OMPCanonicalLoop is used to generate the LLVM IR for the
loop trip count callback. Then, in the body callback a local allocation
is created for the loop variable, and the OMPCanonicalLoop is used
to initialize that loop variable based on the current loop iteration
number. Lastly, Clang emits the CompoundStmt which includes the
body of the loop.

While our work uses Clang as the front-end, the changes de-
scribed would be applicable to any potential front-end wanting to
use LLVM’s GPU runtime. The front-end would have to provide
code generation for the loop trip count and the loop body, similar
to the methodology we have described. Then the OMP IR Builder
would perform the loop task outlining and generate the appropriate
runtime function calls. Loop scheduling is then performed from
within the runtime.

4.3 Variable Globalization
For simd loops executing in the CPU-centric generic mode (reg.
Section 5.3) some variables will need to be shared among threads
and will be globalized.When a simd loop is generated, any variables
used within the body of the loop (which are the variables that
will be passed to the outlined function) are checked to determine
which memory they reside in. If the variable is a local allocation (i.e
only visible to the current thread) it will be replaced with a shared
memory allocation. If the variable in untraceable (such as the case
if its allocation is in another translation unit) then it will be copied
to shared memory just before the simd loop is executed.

5 GPU RUNTIME IMPLEMENTATION
This section will discuss our implementation of three-leveled hierar-
chical parallelism in the LLVM/OpenMP runtime library, including
new runtime functions for simd loops and significant changes to
teams and parallel regions.

5.1 OpenMP/GPU Hardware Mapping
Fig. 2 shows an example of mapping a potential OpenMP target
region onto a NVIDIA GPU. The teams directive spawns a league of
teams and each team may contain many threads. This figure shows
a single OpenMP team, but typically the league would contain
several teams depending on the maximum number of concurrent
threads the hardware allows. One thread within the team will be
distinguished as the team main thread and will be in charge of
running the code contained within the teams region.

The parallel directive spawns a team of threads to execute the
parallel region. For this work, the team of threads is evenly divided
into SIMD groups, where all threads within a group occupy the
same warp. Our implementation does not allow for SIMD groups
to encompass multiple warps as it extensively utilizes warp-level
thread barriers. One thread in each group is designated as the SIMD
main thread and will execute parallel regions while all other
threads are SIMD worker threads and will execute simd loops.

The simd directive specifies that the attached loop should be
executed using SIMD parallelism. For GPUs this is done by paral-
lelizing across adjacent threads in a warp. For our implementation
a simd loop distributes loop iterations across threads in the same
SIMD group.

When a teams region is executing in generic mode an additional
warp is assigned to act as the team main thread. This additional
warp is needed for the purpose of thread synchronization as dis-
cussed in [17]. However, synchronization of threads within a SIMD
group is done using a warp-level synchronization, which does not
have the same limitations.
The following functions have been created to handle the mapping
of the SIMD groups within the runtime:

• getSimdGroup returns which group the thread belongs to.
• getSimdGroupId returns the thread’s ID within its group.
SIMD main threads always have an ID of 0.

• getSimdGroupSize returns the size of the SIMD group. All
SIMD groups are the same size and the size could differ
between parallel regions.

• isSimdGroupLeader returns true if the thread is a SIMD main
thread for its group.

Implementing OpenMP’s SIMD Directive in LLVM’s GPU Runtime ICPP ’23, August 07–11, 2023, Salt Lake City, Utah, USA

Figure 2: A possible mapping of a single OpenMP team on an NVIDIA GPU us-
ing four warps, totaling 128 threads for the computation. One SIMD group per
warp, meaning one SIMDmain and 31 SIMD workers per warp. One additional
warp is included to act as the main thread in the team, which is required when
the teams region is executing in generic mode.

• simdmask returns a bit-mask that represents which threads
in the warp share a SIMD group with the thread.

5.2 Execution of OpenMP Offloaded Regions
At the start of an offloaded region all threads will begin by calling
the __target_init function, which generally initializes the shared
team state. It is also an important divergence point for the threads
in the team. If the teams region executes in SPMD mode all threads
will return from this function and immediately begin executing the
user code. If the offloaded region will instead execute in generic
mode only the team main thread will return to the user code while
all the other threads will enter into a state machine where they will
immediately encounter a thread barrier and remain idle until the
main thread encounters an OpenMP parallel region.

parallel regions are handled through the runtime function
__parallel. If running in SPMD mode all threads will reach the
same call of __parallel and all threads will independently resolve
the function pointer and handle the variable payload. In generic
mode only the main thread will reach the __parallel function and
the worker threads must be notified of the parallel region and any
needed variables. When the main thread completes the thread bar-
rier the worker threads will fetch the outlined function pointer and
any variables used within the outlined function before executing it.
Fig. 3 shows the __parallel function assuming the encompassing
teams region is executing in SPMD mode.

Regardless of whether the teams region is SPMD or generic mode
the runtime reaches another important divergence point in __paral-
lel where each OpenMP parallel region can also be either SPMD
or generic. In SPMD mode, all threads within the team will execute
the parallel region, while in generic mode the main thread in
each SIMD group will execute the parallel region and worker
threads enter the SIMD state machine and immediately encounter
a warp-level barrier and wait for a simd loop to be encountered. A
call to the new runtime function __simd signifies a worksharing

void __parallel(
void *fn, void **args, int64_t nargs, int32_t SPMD

) {
if(SPMD) {

// All threads execute region in SPMD mode.
invokeMicrotask(fn, args, nargs);
return;

}
if(isSimdGroupLeader()) {

// Only simd mains execute region in generic mode.
invokeMicrotask(fn, args, nargs);
// Send termination signal to simd workers
setSimdFn(nullptr);
synchronizeWarp(simdmask());

} else {
// Simd workers enter the state machine.
simdStateMachine();

}
}

Figure 3: A portion of the __parallel runtime function showing the two dif-
ferent execution modes that parallel regions can be. If the parallel region
is SPMD mode then all threads within the SIMD group will execute it. If it
is instead generic mode only the SIMD main thread will execute the parallel
region while all SIMD workers enter into a separate SIMD state machine.

loop for SIMD parallelization. Fig. 4 shows this function with the
two different execution modes.

void __simd(void *WorkFn, uint64_t TripCount,
void **Args, uint32_t NumArgs) {

if(isParallelSPMD()) {
// In SPMD all threads in the SIMD group
// execute the loop
__workshare_loop_simd(WorkFn, TripCount, Args);
synchronizeWarp(simdmask());
return;

}

// In generic SIMD main thread sets up the
// group state and signals the workers
setSimdFn(WorkFn, TripCount);
void **GlobalArgs;
__begin_sharing_simd_args(&GlobalArgs);
for(uint32_t i = 0; i < NumArgs; i++)

GlobalArgs[i] = Args[i];
synchronizeWarp(simdmask());
__workshare_loop_simd(WorkFn, TripCount, GlobalArgs);
synchronizeWarp(simdmask());

}

Figure 4: Runtime function forOpenMP simd loops in SPMDor genericmode. If
the parallel region is generic mode then all variables needed within the simd
loop must be shared from the SIMD main thread, and the SIMD workers must
be notifed of what loop should be executed and for how many iterations. If
the parallel region is instead in SPMD mode then this information is already
local to each thread and no communication needs to occur.

ICPP ’23, August 07–11, 2023, Salt Lake City, Utah, USA Trovato and Tobin, et al.

5.3 CPU-centric Generic Model
Fig. 5 shows how each thread functions within the runtime. When
the threads encounter an OpenMP parallel region that is exe-
cuting in generic mode the threads will split into two possible
paths, similar to teams generic mode. Threads that are designated
as SIMD main will begin executing the parallel region user code.
Fig. 2 shows a possible configuration of these SIMD mains with one
main thread per warp, however it is possible to have multiple SIMD
mains per warp. Threads that are designated as SIMD workers will
enter the SIMD state machine and become idle while waiting for
the main thread to encounter a simd loop. This is done through a
warp-level barrier using a bit-mask to identify all threads within
the same SIMD group. Fig. 6 shows the implementation for this
state machine.

When the SIMD main thread encounters a call to __simd, it
updates the SIMD group state with some information about the
current simd loop, such as a function pointer that references the
outlined function to be executed, the trip count of the loop and the
addresses of all variables neededwithin the outlined function.When
the SIMDmain thread reaches the end of the current parallel region
it sets the outlined function pointer in the SIMD group state as a
nullptr which signifies a termination signal, and then notifies the
workers through the warp synchronization. After this, all threads
within that SIMD group will exit and run into a team-level barrier,
where they will wait for all threads in all SIMD groups to finish the
parallel region.

5.3.1 Variable Sharing. When running in generic mode variables
used within parallel regions and simd loops need to be shared
from the main thread to all worker threads. These variables are
always stored as pointers such that each variable is a consistent size.
A static allocation of memory is reserved in GPU shared memory
exclusively for these variables. Prior to our work the only thread
that would write to this shared memory was the singular team
main thread. If more variables needed to be shared than what the
pre-allocated memory could hold, a global allocation is created to
hold the variables instead, with that memory being deallocated at
the end of the parallel region.

Now that this variable sharing space is written to by the team
main thread and all SIMD main threads, the size of this space is
increased and the available space is divided evenly among the SIMD
groups. If a SIMD group needs more space than what is available
a global memory allocation is created instead, which means that
each SIMD group will have a pointer which correlates to where
variables are stored (either in the shared memory or in a new global
memory allocation).

Additionally, the size of a SIMD group can differ among different
parallel regions. As an example using NVIDIA GPUs, if a target re-
gion is launched using 128 threads across 4 total warps, the number
of total SIMD groups would be in the range of 4 ≤ 𝑁𝑢𝑚𝐺𝑟𝑜𝑢𝑝𝑠 ≤
64, with the threads per group being 2 ≤ 𝑇ℎ𝑟𝑒𝑎𝑑𝑠𝑃𝑒𝑟𝐺𝑟𝑜𝑢𝑝 ≤ 32
(for 32 threads in a warp). If the group size is less than two then the
parallel region would run on all threads in the team and all simd
loops would execute sequentially. Different parallel regions can use
a different number of threads per group which results in a varying
number of groups. In a case where a large number of SIMD groups

are used the variable sharing space is less likely to be able to fit all
variables.

The most noteworthy change in hardware resource usage from
our work comes in the form of these shared memory changes.
Originally, 1,024 bytes of shared memory were reserved as the
variable sharing space. We have increased this to 2,048 bytes to
help accommodate the new SIMD groups. This number is subject
to change as more experimentation is done to select a size that
is tailored for a typical code utilizing simd. Additionally, shared
memory usage in general is increased for codes using our generic
SIMD implementation as variables needed within the simd loops
need to be moved to shared memory to be accessible by all threads
within the SIMD group. This will vary by code, and will also be
mitigated completely when using SPMD mode (reg. Section 5.4).

5.4 Optimized GPU-centric SPMD Model
A parallel region using SPMD mode will be executed by all threads
in the team. Unlike the generic mode, there is no difference be-
tween SIMD main and SIMD workers. All threads will allocate any
variables local to the parallel region, determine the trip count of
the loop, load the variable payload and call the __simd runtime
function using the outlined function pointer. Since all of this in-
formation is now local to each thread there does not need to be
any communication like in generic mode and variables local to the
parallel region that are needed in a simd loop do not need to be
moved to shared memory.

In the case where the simd directive in unused, parallel regions
will always execute in SPMD mode with a SIMD group size of one.
This signifies that only two levels of parallelism should be used and
behaves identically to the current implementation of LLVM/Clang.
Fig. 7 shows how SIMD worker threads handle both SPMD and
generic modes.

Similar to teams regions, parallel regions executing in SPMD
mode must not produce side-effects. In the case where all simd
loops are tightly nested within the parallel region then no side-
effects will occur. However, in any other scenario there may need
to be some level of thread guarding and variable broadcasting to
eliminate side-effects, such as [16] describes for teams regions.

5.4.1 Towards AMD GPU Support. AMD GPUs introduce some
limitations to our execution model. LLVM/OpenMP does not pro-
vide an implementation for wavefront-level barriers, making our
SIMD generic mode implementation incompatible with AMD GPUs.
For this reason, our implementation only currently supports SPMD
mode for AMDGPUs. If a parallel region would run in generic mode
all simd loops will run sequentially. There may be some possibilities
to implement generic mode on AMD GPUs using alternate methods
for the thread barrier, however we do not yet know the viability of
such approaches and will need to be explored as a future direction.

5.5 SIMDWorksharing Loop Execution
Fig. 8 shows the implementation for executing simd loops within
the runtime. TheWorkFn variable is the outlined function which
contains the body of the loop that each thread will execute. The
TripCount variable is the total number of iterations that the loop
should run for. Lastly, the Args variable is the payload passed into

Implementing OpenMP’s SIMD Directive in LLVM’s GPU Runtime ICPP ’23, August 07–11, 2023, Salt Lake City, Utah, USA

Figure 5: Program flow diagram of the GPU runtime assuming all regions are executed in generic mode.

void simdStateMachine() {
do {
void *WorkFn;
void **FnArgs;
uint64_t TripCount;

// Wait for work
synchronizeWarp(simdmask());
getSimdFn(&WorkFn, &TripCount);
if(!WorkFn) // Terminate at end of parallel
return;

// Fetch shared variables and execute loop
getSimdArgs(&FnArgs);
__workshare_loop_simd(WorkFn, TripCount, FnArgs);
synchronizeWarp(simdmask());

} while(true);
}

Figure 6: New state machine for SIMD workers when the containing parallel
region executes in generic mode. Workers immediately reach a warp-level
barrier. Once the SIMD main thread completes the barrier all workers will
fetch the function pointer of the current simd loop, as well as any variables
shared from the SIMD main thread. If the function pointer is a null pointer
then the worker threads exit the state machine, as this signifies the end of the
current parallel region.

the outlined function which may contain any number of pointers
from global, shared or local memory.

Indirect calls using function pointers is normally costly. However,
LLVM/Clang performs a front-end static analysis that creates an
if/cascade, similar to a C switch statement, to compare the function
pointer against known outlined regions, a methodology defined
in [5]. In the case that the region is not known and cannot be placed
in this if/cascade, such as regions in functions defined in other
translation units, an indirect call is emitted as a fallback option.

6 RESULTS
This sectionwill analyze performance results of our implementation
on several selected codes that are known to benefit from using three
levels of parallelism. Additionally, codes that do not receive any
obvious benefit from this optimization are used to understand the
performance penalty of our implementation if used unnecessarily
to better give application developers guidance on using the simd
directive.

6.1 Experimental Setup
All results are gathered on the Perlmutter supercomputer (NERSC-
9) hosted by the National Energy Research Scientific Computer
Center. Each computation node contains four NVIDIA A100 (40GB)
GPU and one AMD EPYC 7763 CPU. All runs are collected using
a single GPU and using the average of 10 runs. We use LLVM 16
with our custom modifications and CUDA version 11.7.

ICPP ’23, August 07–11, 2023, Salt Lake City, Utah, USA Trovato and Tobin, et al.

Figure 7: Flow diagram for SIMD worker threads upon encountering a parallel
region. If the region should be executed in SPMD mode, worker threads will
execute the entire region under the assumption that no side-effects will be
produced. If the region should instead be executed in generic mode, worker
threads will enter into the state machine and wait for a simd loop to be en-
countered.

void __simd_loop(
void *WorkFn, uint64_t TripCount, void **Args) {
uint64_t omp_iv = getSimdGroupId();
synchronizeWarp(simdmask());
while(omp_iv < TripCount) {

WorkFn(omp_iv, Args);
omp_iv += getSimdGroupSize();

}
}

Figure 8: Function for executing simd loops. Each thread will execute a portion
of the total iterations depending on SIMD group size.

6.2 Limitations
These results will primarily focus on the performance of the simd
implementation in the different execution modes. We are not able
to fully address shortcomings in the OpenMP runtime [25] out-
side of the additions made in this paper. Additionally, we cannot
comment on the general performance of AMD GPUs in LLVM
as it is not mature enough, and is not yet fully supported by our
implementation.

SIMD is not universally useful on all codes. The codes used in
these results were selected specifically with the knowledge that they
are compatible with three levels of parallelism and will benefit from
this optimization. Since simd is not a well-supported feature among
OpenMP offloading compilers there are few benchmarks that utilize

Figure 9: Results for various kernels comparing our simd implementation to
the original two levels of parallelism. Experiments with all possible SIMD
group sizes.

the simd directive, so several of the codes used here either had the
simd directive added for this work or were adapted from OpenACC
which has a mature three-leveled parallel implementation.

Additionally, with our new API for OpenMP worksharing loops,
we do not yet have a compatible implementation for OpenMP re-
ductions. Some potentially valuable experiments are impossible in
the current stage of this project without the ability for reductions.
Section 7 discusses the future direction we are taking with respect
to the loop API and the OpenMP reduction clause.

6.3 SIMD Benefit Results
We observe the performance increase from several codes with
known benefits from three-leveled parallelism. sparse_matvec is a
sparse, matrix-vector product kernel adapted from and OpenACC
code described in [2]. The inner-most loop of this kernel is relatively
small, and varies based on the sparsity of the matrix. This kernel
also originally used a data reduction on the product calculated in
the inner-most loop, however reductions are not yet implemented
for our new loop execution model, so instead we use a less efficient
atomic update for the product.

To utilize the original two levels of parallelism we parallelize
the outer loop with teams distribute and the inner loop with
parallel for. With this structure the teams region will run in
generic mode. For the three levels of parallelism we instead par-
allelize the outer loop with the combined teams distribute
parallel for and the inner loop with simd, meaning the teams
region will execute in SPMD mode and the parallel region in
generic mode.

SU3_bench [13] has a small inner-loop with 36 total iterations
that was originally executed serially by each thread. We now apply
simd to this loop to allow for SIMD parallelism on the GPU. In this
code both teams and parallel regions are SPMD mode.

We have also created a new benchmarking kernel that very
closely fits the three levels of parallelism to gauge the performance
increase that these optimizations could potentially provide in an
ideal scenario. This kernel example has a small inner loop that fits
into a single warp, but is not collapsible with the outer-loop nest.
We parallelize the outer-loop with teams distribute parallel
for and the inner-loop with simd. The teams region is SPMD while
the parallel is generic mode.

Fig. 9 shows the relative speedup over the two-level parallel
baseline. For sparse_matvecwe see amaximum speedup of 3.5x. This

Implementing OpenMP’s SIMD Directive in LLVM’s GPU Runtime ICPP ’23, August 07–11, 2023, Salt Lake City, Utah, USA

Figure 10: Relative speedup of the different SIMD execution modes. All teams
regions are executed in SPMDmode. The performance similarity of “SPMD
SIMD” and “No SIMD” suggests low performance overhead in our SPMD im-
plementation.

is partially due to the teams region now being SPMD mode which
means that extra warps are not needed for the team main thread, as
well as using a much larger thread count per OpenMP team.We also
see that a SIMD group size of 8 gives the best performance, likely
due to it on average wasting fewer threads than other possible sizes
due to the varying sparsity of the matrix, whereas the two-level
parallel approach uses thread blocks of size 32, meaning that many
threads may be idle.

SU3_bench sees a maximum speedup of 1.3x using a SIMD group
size of 4 threads, however this is only slightly better than 2 and 8
thread group sizes. These group sizes likely performed better than
other options by reducing the number of idle threads given the size
of the simd loop. Lastly, our benchmarking kernel sees a speedup
of 2.15x with a SIMD group size of 32 threads, but is very close in
performance to a group size of 16.

These results highlight the possible improvement with SIMD
parallelism. Not all codes will receive identical benefit from this
optimization, but codes that cannot express efficient vector par-
allelism in a two-level parallel structure can see a speedup in the
range of these example kernels.

6.4 Performance Cost of the Implementation
To understand the performance difference of the different execu-
tion modes we analyze several kernels that include three paralleliz-
able loops. The execution modes of these kernels can be adjusted
between generic and SPMD mode by changing whether or not
the loops are tightly-nested. We have used three codes for this
analysis: A simple three-dimensional heat diffusion kernel called
laplace3d, and two kernels adapted from an OpenACC code called
muram_transpose and muram_interpol [30]. We expect that these
codes may see a small performance benefit from using a three-
leveled parallel approach as it may slightly improve data-reuse,
however, our main goal is to observe performance differences be-
tween generic and SPMD mode with our current implementation.

Fig. 10 shows the relative speedup of the different simd execution
modes compared to the “No SIMD” version, which uses teams
SPMD mode with two levels of parallelism. The number of teams
and threads-per-team is kept consistent and the SIMD group size is
32 for all examples.

All regions executing in SPMD mode performs similarly to the
“No SIMD” version, with laplace3d and muram_interpol seeing a
marginal performance increase. Running in generic mode sees a
roughly 15% slowdown, which is the penalty for using the state
machine and the extra synchronization it needs. Overall, from these
results we conclude that our SIMD implementation produces little-
to-no performance overhead when executing in SPMD mode. Ad-
ditionally, the overhead accrued when executing in SIMD generic
mode is comparable to the overhead of the teams generic mode.

6.5 Developer Recommendations and Best
Practices

From these results we put forward some general guidelines to aid
any developers who would use the simd directive for their codes. In
situations where SPMD mode can be utilized (i.e when parallel
regions and simd loops are tightly nested) there is not a noteworthy
penalty for using the simd directive. However, in situations where
generic mode would be used instead one would have to weigh the
benefit of such an optimization against the performance penalty of
generic mode. In codes that truly benefit from simd (i.e when there
exists a non-collapsible, but small inner loop) the benefit typically
outweighs this cost.

Additonally, with the eventual inclusion of automatic conversion
from SIMD-generic into SIMD-SPMD the cost of using simd in a
nonoptimal case will be further minimized. However, it is still likely
that even with proper SPMDization the included thread guarding
and variable broadcasting would still see some amount of perfor-
mance degradation, meaning that it is still likely best practice to use
only two-leveled parallelism when all three levels are unneeded.

For choosing a simdlen, or SIMD group size, our best results
werewhenwe focused on reducing threadwaste, choosing sizes that
best evenly divide our loop trip count. When there are several viable
group sizes we found that there still may be slight performance
differences between them, depending on the code. It is likely best to
experiment with the different options to see which fits the specific
scenario best.

7 CONCLUSION AND FUTUREWORK
In this paper we have discussed our design and implementation
of the OpenMP simd directive in LLVM’s OpenMP GPU runtime
with both CPU-centric and GPU-kernel execution models. This
SIMD parallelism is an important optimization for codes that can
efficiently express all three levels of available parallelism on GPUs,
and we have shown a performance improvement on a variety of
compatible codes in the range of 1.3-3.5x.

Many existing OpenMP offloaded applications are not able to
utilize the simd directive as compilers do not offer support for
this feature yet. It is in the immediate future direction to solicit
further case studies, or alter existing codes, to continue exploring
performance benefits and limitations of our model.

Additionally, we plan to extend the work from [16] to also sup-
port the SPMDization of parallel regions. This will make SPMD
mode applicable to a wider range of codes, which will improve gen-
eral performance as well as compatibility of our implementation to
AMD GPUs.

ICPP ’23, August 07–11, 2023, Salt Lake City, Utah, USA Trovato and Tobin, et al.

We have also introduced a new API for OpenMP workshar-
ing loops. In these results we have only explored simd loops, but
distribute, for and combined loop constructs are supported. The
APImust be extended to include data reductions and loop collapsing,
as these are common optimizations in OpenMP parallel codes. This
will also expand the pool of applications that we can experiment
with our new implementation.

ACKNOWLEDGMENTS
This research was supported by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration.
The research is also supported by the NSF under grant no. 1814609.
The views and opinions of the authors do not necessarily reflect
those of the U.S. government or Lawrence Livermore National
Security, LLC neither of whom nor any of their employees make
any endorsements, express or implied warranties or representations
or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of the information contained herein.
This work was in parts prepared by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344 (LLNL-CONF-
851052).

REFERENCES
[1] [n. d.]. OpenACC Specification. https://www.openacc.org/specification. Ac-

cessed: 2021-05-27.
[2] 2021. OpenACC Programming and Best Practices Guide. openacc-standard.org.

47–52 pages. https://www.openacc.org/sites/default/files/inline-files/OpenACC_
Programming_Guide_0_0.pdf

[3] Samuel F. Antão, Alexey Bataev, Arpith C. Jacob, Gheorghe-Teodor Bercea,
Alexandre E. Eichenberger, Georgios Rokos, Matt Martineau, Tian Jin, Guray
Ozen, Zehra Sura, Tong Chen, Hyojin Sung, Carlo Bertolli, and Kevin O’Brien.
2016. Offloading Support for OpenMP in Clang and LLVM. InWorkshop on the
LLVM Compiler Infrastructure in HPC (LLVM-HPC). 1–11.

[4] Carlo Bertolli, Samuel Antão, Gheorghe-Teodor Bercea, Arpith C. Jacob, Alexan-
dre E. Eichenberger, Tong Chen, Zehra Sura, Hyojin Sung, Georgios Rokos, David
Appelhans, and Kevin O’Brien. 2015. Integrating GPU support for OpenMP Of-
floading Directives into Clang. In Workshop on the LLVM Compiler Infrastructure
in HPC (LLVM-HPC). 5:1–5:11.

[5] Carlo Bertolli, Samuel Antão, Alexandre E. Eichenberger, Kevin O’Brien, Zehra
Sura, Arpith C. Jacob, Tong Chen, and Olivier Sallenave. 2014. Coordinating
GPU Threads for OpenMP 4.0 in LLVM. In LLVM Compiler Infrastructure in HPC
(LLVM-HPC). 12–21.

[6] Con Bradley and Benedict R Gaster. 2008. Exploiting loop-level parallelism for
SIMD arrays using OpenMP. In A Practical Programming Model for the Multi-Core
Era: 3rd International Workshop on OpenMP, IWOMP 2007, Beijing, China, June
3-7, 2007 Proceedings 3. Springer, 89–100.

[7] Holger Brunst, Sunita Chandrasekaran, Florina M Ciorba, Nick Hagerty, Robert
Henschel, Guido Juckeland, Junjie Li, Verónica GMelesse Vergara, SandraWienke,
and Miguel Zavala. 2022. First Experiences in Performance Benchmarking with
the New SPEChpc 2021 Suites. In International Symposium on Cluster, Cloud and
Internet Computing (CCGrid). 675–684.

[8] Diego Luis Caballero de Gea. 2015. SIMD@ OpenMP: a programming model
approach to leverage SIMD features. (2015).

[9] Barbara Chapman, Buu Pham, Charlene Yang, Christopher Daley, Colleen Bertoni,
Dhruva Kulkarni, Dossay Oryspayev, Ed D’Azevedo, Johannes Doerfert, Keren
Zhou, et al. 2021. Outcomes of OpenMP Hackathon: OpenMP Application Expe-
riences with the Offloading Model (Part II). In International Workshop on OpenMP
(IWOMP). 81–95.

[10] Christopher Daley, Hadia Ahmed, Samuel Williams, and Nicholas Wright. 2020.
A Case Study of Porting HPGMG from CUDA to OpenMP Target Offload. In
International Workshop on OpenMP (IWOMP). 37–51.

[11] Johannes Doerfert, Jose Manuel Monsalve Diaz, and Hal Finkel. 2019. The
TRegion Interface and Compiler Optimizations for OpenMP Target Regions. In
International Workshop on OpenMP (IWOMP), Vol. 11718. 153–167.

[12] Johannes Doerfert, Atemn Patel, Joseph Huber, Shilei Tian, Jose M Monsalve
Diaz, Barbara Chapman, and Giorgis Georgakoudis. 2022. Co-Designing an

OpenMP GPU Runtime and Optimizations for Near-Zero Overhead Execution.
In International Parallel and Distributed Processing Symposium (IPDPS). IEEE.

[13] Douglas Doerfler, Christopher Daley, and USDOE. 2020. SU3_bench: Lattice
QCD SU(3) Matrix-Matrix Multiply Microbenchmark (SU3_bench) v1.0. https:
//doi.org/10.11578/dc.20200610.4

[14] Jack Dongarra, Mark Gates, Azzam Haidar, Jakub Kurzak, Piotr Luszczek, Stan-
imire Tomov, and Ichitaro Yamazaki. 2014. Accelerating Numerical Dense Linear
Algebra Calculations with GPUs. Numerical Computations with GPUs (2014),
1–26.

[15] H Carter Edwards and Christian R Trott. 2013. Kokkos: Enabling Performance
Portability Across Manycore Architectures. In Extreme Scaling Workshop (XSW).
18–24.

[16] Joseph Huber, Melanie Cornelius, Giorgis Georgakoudis, Shilei Tian, Jose
Manuel Monsalve Diaz, Kuter Dinel, Barbara M. Chapman, and Johannes Doer-
fert. 2022. Efficient Execution of OpenMP on GPUs. In International Symposium
on Code Generation and Optimization (CGO). 41–52.

[17] Arpith Chacko Jacob, Alexandre E Eichenberger, Hyojin Sung, Samuel F Antão,
Gheorghe-Teodor Bercea, Carlo Bertolli, Alexey Bataev, Tian Jin, Tong Chen,
Zehra Sura, et al. 2017. Efficient fork-join on GPUs through warp specialization.
In 2017 IEEE 24th International Conference on High Performance Computing (HiPC).
IEEE, 358–367.

[18] Ian Karlin, Tom Scogland, Arpith C Jacob, Samuel F Antao, Gheorghe-Teodor
Bercea, Carlo Bertolli, Bronis R de Supinski, Erik W Draeger, Alexandre E Eichen-
berger, Jim Glosli, et al. 2016. Early Experiences Porting Three Applications to
OpenMP 4.5. In International Workshop on OpenMP (IWOMP). 281–292.

[19] Michael Klemm, Alejandro Duran, Xinmin Tian, Hideki Saito, Diego Caballero,
and Xavier Martorell. 2012. Extending OpenMP* with Vector Constructs for
Modern Multicore SIMD Architectures. IWOMP 7312 (2012), 59–72.

[20] Matt Martineau, Simon McIntosh-Smith, Carlo Bertolli, Arpith C. Jacob, Samuel F.
Antao, Alexandre Eichenberger, Gheorghe-Teodor Bercea, Tong Chen, Tian Jin,
Kevin O’Brien, Georgios Rokos, Hyojin Sung, and Zehra Sura. 2016. Performance
Analysis and Optimization of Clang’s OpenMP 4.5 GPU Support. In Interna-
tional Workshop on Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS). 54–64.

[21] M. Naumov, M. Arsaev, P. Castonguay, J. Cohen, J. Demouth, J. Eaton, S. Layton,
N. Markovskiy, I. Reguly, N. Sakharnykh, V. Sellappan, and R. Strzodka. 2015.
AmgX: A Library for GPU Accelerated Algebraic Multigrid and Preconditioned
Iterative Methods. SIAM Journal on Scientific Computing 37, 5 (2015), S602–S626.

[22] Güray Özen, Simone Atzeni, Michael Wolfe, Annemarie Southwell, and Gary
Klimowicz. 2018. OpenMP GPU Offload in Flang and LLVM. In Workshop on the
LLVM Compiler Infrastructure in HPC (LLVM-HPC). 1–9.

[23] Simon J Pennycook, Jason D Sewall, and Jeff R Hammond. 2018. Evaluating the
Impact of Proposed OpenMP 5.0 Features on Performance, Portability and Pro-
ductivity. In International Workshop on Performance, Portability and Productivity
in HPC (P3HPC). 37–46.

[24] Swaroop Pophale, Dossay Oryspayev, B Chapman, B Pham, C Yang, C Daley,
C Bertoni, D Kulkarni, E D’Azevedo, H He, et al. 2021. Outcomes of OpenMP
Hackathon: OpenMP Application Experiences with the Offloading Mode. Technical
Report. Brookhaven National Lab.(BNL), Upton, NY (United States).

[25] Shilei Tian, Jon Chesterfield, Johannes Doerfert, and Barbara Chapman. 2021.
Experience Report: Writing A Portable GPU Runtime with OpenMP 5.1. In Inter-
national Workshop on OpenMP.

[26] Shilei Tian, Johannes Doerfert, and Barbara M. Chapman. 2020. Concurrent
Execution of Deferred OpenMP Target Tasks with Hidden Helper Threads. In
Languages and Compilers for Parallel Computing (LCPC). 41–56.

[27] E. Tiotto, B. Mahjour, W. Tsang, X. Xue, T. Islam, and W. Chen. 2020. OpenMP
4.5 Compiler Optimization for GPU Offloading. IBM Journal of Research and
Development 64, 3/4 (2020), 14:1–14:11.

[28] Florian Wende, Martijn Marsman, Jeongnim Kim, Fedor Vasilev, Zhengji Zhao,
and Thomas Steinke. 2019. OpenMP in VASP: Threading and SIMD. International
Journal of Quantum Chemistry 119, 12 (2019), e25851.

[29] Florian Wende, Matthias Noack, Thomas Steinke, Michael Klemm, Chris J New-
burn, and Georg Zitzlsberger. 2016. Portable simd performance with openmp*
4. x compiler directives. In Euro-Par 2016: Parallel Processing: 22nd International
Conference on Parallel and Distributed Computing, Grenoble, France, August 24-26,
2016, Proceedings 22. Springer, 264–277.

[30] Eric Wright, Damien Przybylski, Matthias Rempel, Cena Miller, Supreeth Suresh,
Shiquan Su, Richard Loft, and Sunita Chandrasekaran. 2021. Refactoring the
MPS/University of Chicago RadiativeMHD (MURaM)model for GPU/CPU perfor-
mance portability using OpenACC directives. In Platform for Advanced Scientific
Computing Conference (PASC). 1–12.

[31] Erik Zenker, Benjamin Worpitz, René Widera, Axel Huebl, Guido Juckeland,
Andreas Knüpfer, Wolfgang E Nagel, and Michael Bussmann. 2016. Alpaka–An
Abstraction Library for Parallel Kernel Acceleration. In 2016 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW). 631–640.

https://www.openacc.org/specification
https://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0_0.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0_0.pdf
https://doi.org/10.11578/dc.20200610.4
https://doi.org/10.11578/dc.20200610.4

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 OpenMP "Generic" CPU-centric Execution Model
	3.2 OpenMP "SPMD" GPU-centric Execution Model

	4 LLVM Code Generation for OpenMP Loops
	4.1 Interfacing with the GPU Runtime Through the OMP IR Builder
	4.2 OpenMP Worksharing Loops in Clang
	4.3 Variable Globalization

	5 GPU Runtime Implementation
	5.1 OpenMP/GPU Hardware Mapping
	5.2 Execution of OpenMP Offloaded Regions
	5.3 CPU-centric Generic Model
	5.4 Optimized GPU-centric SPMD Model
	5.5 SIMD Worksharing Loop Execution

	6 Results
	6.1 Experimental Setup
	6.2 Limitations
	6.3 SIMD Benefit Results
	6.4 Performance Cost of the Implementation
	6.5 Developer Recommendations and Best Practices

	7 Conclusion and Future Work
	Acknowledgments
	References

