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Abstract—GPU accelerators are ubiquitous in modern HPC
systems. To program them, users have the choice between vendor-
specific, native programming models, such as CUDA, which
provide simple parallelism semantics with minimal runtime
support, or portable alternatives, such as OpenMP, which offer
rich parallel semantics and feature an extensive runtime library
to support execution. While the operations of such a runtime
can easily limit performance and drain resources, it was to some
degree regarded an unavoidable overhead.

In this work we present a co-design methodology for opti-
mizing applications using a specifically crafted OpenMP GPU
runtime such that most use cases induce near-zero overhead.
Specifically, our approach exposes runtime semantics and state
to the compiler such that optimization effectively eliminating
abstractions and runtime state from the final binary. With the
help of user provided assumptions we can further optimize
common patterns that otherwise increase resource consumption.

We evaluated our prototype build on top of the
LLVM/OpenMP GPU offloading infrastructure with multiple
HPC proxy applications and benchmarks. Comparison of CUDA,
the original OpenMP runtime, and our co-designed alterna-
tive show that, by our approach, performance is significantly
improved and resource consumption is significantly lowered.
Oftentimes we can closely match the CUDA implementation
without sacrificing the versatility and portability of OpenMP.

Index Terms—OpenMP, gpu, offloading, compiler optimization

I. INTRODUCTION

Efficiently and effectively utilizing different HPC system
becomes more complex as such systems grow in heterogeneity.
Software stacks that are increasingly specialized towards ven-
dor hardware make the situation worse. While some parallel
programming models offer portable acceleration across various
platforms, this portability can be associated with a price. A
common source of overheads is a rich parallel semantic model
and the complex runtime system needed to support it. Kernel
languages, like CUDA and HIP, are very lean in an effort to
avoid potentially slow features. OpenACC, a portable parallel
programming model, generally follows this design principle
too. OpenMP, on the other hand, has basically included its

entire (naturally grown) host model into the target offloading
realm. While this can simplify porting efforts and provides
flexibility, it puts a heavy burden on the compiler and runtime
system to offer complex features with minimal cost.
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Fig. 1: Overview featuring the new OpenMP GPU Runtime as
well as co-designed optimizations. Two separate compilations
are shown (left and right) to illustrate how the application code
but also the command line options will impact the features,
and consequently overheads, that make it into the final binary.

In this work we present a novel OpenMP GPU runtime
that was co-designed together with compiler optimizations.
We show that one can close the gap between the performance
and resource utilization of OpenMP compared to native GPU
programming models for most common use cases. Our ap-
proach provides bare-metal performance for a “common core”
of OpenMP functionality. The idea, as illustrated in Figure 1,



is that the model and the runtime can stay rich and extensive
but you only pay for what you actually use. Less common
features and use cases are still supported but they might result
in decreased performance and increased resource consumption.
Depending on the application code and the compilation flags,
different features of the runtime will effectively be picked and
included in the final binary. Functionality that was not used, or
is not needed after optimization were performed, is statically
pruned and consequently does not induce execution cost.

On top of efficient support of OpenMP features we also
provide enhanced debugging and specialization options. The
former allows to compile an application in debug or release
mode as one would on the host. In debug mode runtime in-
variants are verified, user assertions are checked, and elaborate
debugging options are available to be selected at execution
time. When compiled in release mode these features are
eliminated but with them also their cost. To further improve
performance we provide the user with OpenMP extensions in
form of pragmas, runtime calls, and compiler flags. As their
usefulness is proven in practice we expect them to be adopted,
in one form or another, into the OpenMP standard as well.

The main contributions of this work include:
• An open source implementation of an LLVM/OpenMP

compatible GPU runtime in modern C++ and OpenMP
5.1 that is portable and resource efficient across various
real world use cases.

• A collection of compiler optimizations integrated into the
LLVM core optimization pipeline capable of eliminating
or significantly reducing the overhead of OpenMP on
GPUs in many common use cases.

• An evaluation of the remaining overheads, user facing
assumptions to remedy some of them, and analysis on
how others could be eliminated by future work.

• A detailed evaluation of our runtime, optimizations, and
assumptions using multiple HPC proxy applications and
benchmarks together with a discussion of the differences
to their CUDA implementation.

Non-conceptual limitations of our work include:
• We did not redesign or optimize the reduction implemen-

tation in the LLVM/OpenMP GPU runtime. Reduction
performance is therefore not expected to be impacted
(much) by this work, nor is it evaluated.

• We are still in the process of integrating our work, both
the runtime and the optimizations, into the LLVM com-
munity version. While some parts are available, current
and future performance of the “new” LLVM/OpenMP
GPU runtime can consequently vary.

The remainder of the paper is organized as follows. We dis-
cuss background in Section II, and introduce the design of our
OpenMP GPU runtime in Section III. Next, we talk about the
corresponding optimization passes and how they interact with
the runtime. Evaluation with multiple HPC proxy applications
and benchmarks is provided in Section V, followed by related
works in Section VI. Before we conclude in Section VIII we
discuss remaining challenges in Section VII.

II. BACKGROUND

In this section, we will briefly introduce the LLVM/OpenMP
GPU runtime, compilation and execution model.

A. LLVM/OpenMP GPU Runtime

When compiling from one language to another, there are
usually constructs that are straightforward in the former and
complicated or verbose in the latter. For example, a single
OpenMP construct #pragma omp parallel for is lowered
into a non-trivial amount of newly introduced code in the
application, including runtime library call for certain function-
ality, such as dividing loop iterations.

The LLVM OpenMP GPU runtime library contains various
functions the compiler needs in order to implement OpenMP
semantics when the target is an Nvidia or AMD GPU. The
original implementation in LLVM was written in CUDA [1]
and compiled with Nvidia’s NVCC to PTX assembler. Later
to support AMD GPUs, the source was adapted to compile
alternatively as HIP, which is close enough to CUDA syntax
for the differences to be worked around with macros. Recently
Tian et al. [2] ported the LLVM OpenMP GPU runtime library
to OpenMP 5.1 using only minor extensions not available in
the standard. Such a design allows for maximum re-usability
between different targets, and further lowers the barrier to
entry for future targets that only need to provide a few target
specific intrinsics. While our OpenMP GPU runtime is largely
built from scratch, it follows the same design principles.

B. LLVM/OpenMP GPU Compilation

When compiling an OpenMP offloading program using
LLVM/Clang, the GPU runtime library is first linked into the
user code as an LLVM bitcode library and then optimized
together with the user application in LLVM IR. The applica-
tion is then compiled to the target architecture and passed to
the vendor tool-chain to create an application binary. Finally,
the resulting binary kernel is inserted into the host code as
a named symbol that will be loaded by the offloading plugin
when the program executes.

C. LLVM/OpenMP GPU Execution Model

OpenMP offloading uses a host-centric mode of execution.
The host (CPU) coordinates scheduling and synchronization
of target tasks (i.e. kernels), as well as memory allocation and
movement between the host and GPUs. The teams directive
controls the creation of a league of teams. Each team begins
with a single main thread that can spawn other worker threads
using the parallel directive. The work-sharing directives
for and distribute allow scheduling loop iterations across
threads in a team and teams in a league, respectively.

GPU execution models have a similar hierarchical level of
parallelism. GPUs are composed of multiple streaming mul-
tiprocessors (SM), each capable of executing several threads
grouped into scheduling units that execute at the same time
(e.g. a warp in Nvidia GPUs and wavefront for AMD GPUs).

When lowering OpenMP onto GPUs it is common to map a
team to an SM and the threads of a team to hardware threads



within the SM. Figure 2 shows this mapping between the GPU
execution model and the OpenMP execution model used by
LLVM. The figure also illustrates which memory kinds in the
GPU are accessible by the thread(s) on each level.

SM
global
memory

shared
memory

main thread

worker thread

thread
local
memory /
registers

league of teams

team of threads

Fig. 2: Simplified mapping of the LLVM/OpenMP program-
ming model to the GPU. Top row: Outermost parallelism
across SMs onto which OpenMP teams are mapped. All
threads on this level share the global memory. Middle row:
A single SM corresponding to a team of threads in OpenMP.
Both shared and global memory are accessible by these
threads. Bottom row: A single GPU/OpenMP thread which
has exclusive access to local memory and registers.

OpenMP uses a standard fork-join parallelism model where
the main thread executes alone until an explicit parallel region
is reached. This is in contrast with the GPU where all threads
are active simultaneously. In order to maintain OpenMP se-
mantics, a state machine first introduced in Bertolli et al. [3, 4]
is used to schedule work from the main thread to the parallel
worker threads. This execution mode is called generic mode.
A separate single program multiple data (SPMD) mode is used
when it is known that all threads are active for the entire target
region, completely bypassing the need for a state machine.

III. OPENMP GPU RUNTIME

The new OpenMP GPU runtime was implemented almost
entirely from scratch with portability and modularity in mind.
It consists of roughly 2000 lines of C++ code with OpenMP
pragmas, e.g., for memory placement. It does not include any
system headers and can be compiled for both Nvidia and AMD
GPUs. Similarly, it can be compiled for the CPU and executed
in a “virtual GPU” [5]. Whenever target specific implementa-
tions are necessary we followed methodology outlined in Tian
et al. [2] and utilized modern OpenMP 5.1 features, such as
begin declare variant, for versioning.

A. SPMD-Mode Flag

We use a single boolean flag that is allocated in static
shared memory to indicate if the kernel is executed in SPMD
or generic-mode. The flag is set as part of the runtime

initialization by the main thread of each team and will never
be changed. The content is passed by-value to initialization
functions to avoid reading the flag from memory before the
first synchronization barrier, located after the initialization
code, is reached by all threads.

B. Team ICV State

Each team has a shared internal control variable (ICV) state
allocated in static shared memory. Each ICV state is initialized
by the main thread during runtime initialization. It is later used
by all threads that do not require an individual ICV state. The
expectation is that (most) target regions do not require thread
specific state at all. Hence, accessing the team state should be
fast, or preferably completely optimized out at compile time.

C. Thread States and the Thread ICV State

Each thread in a team has a pointer allocated in static
shared memory that indicates where the most recent ICV state
for that thread can be found. During runtime initialization,
all threads initialize their pointers with NULL to indicate they
do not require a thread specific state, but rather utilize the
shared team ICV state. If at any point a thread enters a nested
data environment alone, or modifies its state such that the
modification is not valid for all other currently active threads,
a new thread specific ICV state is created. In contrast to the
pre-allocated team ICV state and the array holding the thread
state pointers, individual thread ICV states are allocated on
demand via the shared memory stack (ref. Section III-D).
A new individual state is copied from the most recent one,
which might be the team ICV state, and appended to a list
of individual states representing nested data environments.
Allocating and tracking ICV states is in general costly, but
required unless it can be statically determined that the state is
not used and can be eliminated (ref. Section IV-B).

D. Shared Memory Stack

The shared memory stack is allocated in shared memory
and initialized to track the usage of the stack by each thread.
The stack is used whenever the runtime requires memory that
can be shared between the threads in a team. Global memory,
allocated via malloc, is used as a fallback when the stack
is full. In particular there are two uses cases right now: (1)
Variable globalization performed by LLVM/Clang to allow
multiple threads access to “local” variables (ref. Section IV-A).
(2) Individual thread ICV states that are allocated at runtime.
If all uses of the shared memory stack are eliminated through
optimizations (ref. Section IV) the shared memory stack can
be removed entirely. The runtime also supports the use of
dynamic shared memory to change the amount of shared
memory at runtime.

E. Example Team and Thread ICV States

The interplay between the thread states array, the team
ICV state, and potential thread ICV states is illustrated in
Figure 3. The code in Figure 4 is an example input that would
result in the depicted state. While the nested parallel regions



are sequential, they create a new data environment which is
tracked through individual thread ICV states. It is important
to note that nesting parallel regions in the current version
of the runtime is strongly discouraged as it not only causes
runtime allocation of the thread ICV states but also prevents
state elimination (ref. Section IV-B).

NULL NULL NULLNULLNULLThread States

64nthreads-var:

1levels-var:
......

Team ICV State

1nthreads-var:

2levels-var:
......

Thread ICV State

1nthreads-var:

3levels-var:
......

Thread ICV State
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ev

co
py
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Fig. 3: Interplay between states that keep OpenMP internal
control variables (ICVs) available for all threads. Any GPU
state is tracked per team and located in shared memory. The
team state and thread states array are pre-allocated while
the thread state instances are allocated on-demand. Lookups
of states without an explicit thread state instance (indicated as
NULL) are redirected transparently to the team state.
F. Distribute and Work-sharing Loops

The runtime uses new implementations for work-sharing
loops designed to resemble the execution of CUDA-style
thread distributions. Typically, the compiler will generate
work-sharing runtime calls individually for distribute and
for work-sharing directives. The new implementation uses a
combined scheme to better control the scheduling between the
threads and teams in the kernel. The new implementation for
the worksharing constructs is shown in Figure 5.

This implementation breaks compatibility with the OpenMP
host runtime API, but also reduces the overhead through com-
piler optimizations. For example, if the number of iterations
is known to be less than the number of threads in a team
(for work-sharing), or the number of threads across all teams
(for distribute parallel for), that is, each team/thread will

#pragma omp parallel num_threads(64)
if (omp_get_thread_num() == omp_get_team_size()-1){
#pragma omp parallel num_threads(32)
if (omp_get_thread_num() == omp_get_team_size()-1){
#pragma omp parallel num_threads(16)
... // GPU state as shown in Figure 3.

}
}

Fig. 4: Example input with nested parallel regions that will
trigger the creation of thread ICV states at runtime. The state
of the runtime when the innermost parallel region is reached
is sketched in Figure 3.

template<typename T> void
noChunkImpl(void (*LoopBody)(T, void *), void *Args,

T NumBlocks, T BId, T NumThreads, T TId, T
NumIters, bool OverSubscriptionAssumption) {

T TotalThreads = NumBlocks * NumThreads;
// Start index in the normalized space.
T IV = BId * NumThreads + TId;
// Cover the entire iteration space.
if (IV < NumIters) {
do {
// Execute the loop body.
LoopBody(IV, Args);
// Every thread executed one iteration now.
IV += TotalThreads;
// User assumptions to avoid the loop.
if (OverSubscriptionAssumption) break;

} while (IV < NumIters);
}

}

Fig. 5: Pseudocode for the core of the new runtime implemen-
tation of worksharing in the absence of user-defined chunks.

execute at most one iteration/block, then the loops within the
runtime function can be removed. This compile-time assump-
tion can be enabled via two new command-line flags -fopenmp
-assume-teams-oversubscription and -fopenmp-assume-

threads-oversubscription which emit constant globals that
the runtime will “read” at compile time (via constant propa-
gation) and subsequently break the loops after asserting that
the condition actually holds at runtime.

G. Debugging, Assertions, and Assumptions

We provide a single OpenMP GPU runtime that exposes
debugging features with zero overhead for release builds.
Debugging capabilities can be enabled at compile time via
a command line flag and later activated at runtime using an
environment variable. If debugging is not enabled at compile
time, the debugging code paths will be trivially dead and
removed statically. This is similar to the over-subscription
assumptions discussed in Section III-F.

The runtime supports fine-grained debugging through the
use of a bit-field that specifies which debugging features are
to be enabled. Currently, two debugging modes are supported:
runtime assertions and runtime call function tracing. Stan-
dard C/C++ assertions, i.a., assert(cond && "message") are
supported in target regions as we provide an __assert_fail

implementation which is usually found in libc on the host.
The runtime internally uses __assert_assume that provides the
same functionality as a regular assertion if those are enabled.
If not, thus in release mode, the condition will automatically
become an assumption via __builtin_assume.

Assumptions are used extensively by the runtime to inform
the compiler of certain invariants, such as the expected ICV
states (ref. Section IV-B3). Through the described mechanism
they are implicitly checked in debug runs to verify correctness.
Additionally, through the omp assumes directive, we attach
high-level properties to code regions. This is particularly
useful to inform our optimization pass (ref. Section IV) about
the behavior of inline assembly. An example is shown in
Figure 6 where we use the aligned_barrier and no_call_asm

extensions to mark the inline assembly as an aligned barrier
that will not transfer execution to another function.



#pragma omp begin assumes ext_aligned_barrier \
ext_no_call_asm

void syncThreadsAligned() {
constexpr int BarrierNo = 8;
asm volatile("barrier.sync.aligned %0;" :: \

"r"(BarrierNo) : "memory");
}
#pragma omp end assumes

Fig. 6: An aligned barrier in our runtime that uses LLVM
extensions for OpenMP 5.1 assumptions. These assumptions
tell the compiler that the assembly is part of an aligned barrier
and it will not transfer execution to another function.

IV. THE LLVM OPENMP OPTIMIZATION PASS

The OpenMP-Optimization pass (aka. openmp-opt), is en-
abled by default since LLVM 12 and runs multiple times
at optimization level O1 or higher. It uses OpenMP-specific
domain knowledge to optimize OpenMP code with inter-
procedural analysis and code transformation. This section
covers the various optimizations both existing (Section IV-A)
and added for this work (Section IV-B - Section IV-D).

A. Globalization Elimination and SPMDzation

The OpenMP standard was designed with CPU parallelism
in mind. However, architecture differences between the CPU
and GPU make common patterns, such as sharing of local (aka.
“stack”) variables or forking and joining threads, costly on
the latter. The OpenMP optimization pass in LLVM is already
able to transform idiomatic OpenMP code into a form closer
to that of a traditional GPU kernel. We briefly describe three
key optimizations necessary to put our work into context.

1) Internalization: The OpenMP optimization pass per-
forms aggressive internalization. In essence, it duplicates func-
tions with external linkage1 to create an internal only copy,
used when invoked from a kernel within the translation unit,
to aid in inter-procedural analysis.

2) Globalization Elimination: The OpenMP standard im-
plicitly allows threads to share their local variables with other
threads in a team. This is straightforward on a CPU where
the stack is accessible by all threads, but on a GPU this is
not true. In order to maintain OpenMP semantics the front-
end (here LLVM/Clang) allocates potentially shared variables
in “shareable” memory, e.g., shared or global memory. The
existing LLVM OpenMP optimization pass can optimize out
these runtime allocations in parts by determining if they are
executed only by the main thread of a team in isolation or
are private to a single thread. We later utilize this analysis as
described in Section IV-C.

3) SPMDzation: An Attributor-based optimization trans-
forms eligible generic mode kernels to SPMD mode. First,
all sequentially executed code is analyzed inter-procedurally
for any side effects not in compliance with the local guarding
scheme. Instructions executed by the main thread with no side-
effects are simply recomputed while others are guarded for

1Not all linkage types allow this. An optimization remark is emitted if
internalization fails.

single threaded execution. These optimizations allow us to first
transfer the majority of OpenMP regions to closely match the
structure of a standard GPU kernel.

B. Inter-Procedural Conditional Value Propagation

The most important optimization we implemented is fun-
damentally an inter-procedural conditional value propagation
pass that handles certain kinds of memory accesses. In contrast
to the existing implementation in LLVM, namely the inter-
procedural sparse conditional constant propagation pass (IP-
SCCP), our Attributor-based implementation can deal with
various complexities that arise from the GPU design and real
world use cases. Our pass handles common constant folding
situations like operations with (assumed) constant operands or
phi nodes with (assumed) dead predecessors. Furthermore, it
follows values communicated via memory if the underlying
object is properly analyzable. We generally require it to be
an internal global variable, a stack allocation, or the result
of a known memory allocation function, e.g., malloc. In the
following subsection we will detail other functionalities that
are not available anywhere else in LLVM but required to
eliminate the runtime state entirely.

1) Field-Sensitive Access Analysis: To manage the ICV
state, which is the most complex part of the GPU resident
state of the OpenMP runtime, we employ structures that are
allocated in shared memory. Since each field is initialized
and read separately throughout the application, we perform
an analysis that categorizes accesses into bins based on their
relative (constant) offset in bytes and access size. Unknown
offsets or users are binned separately. This effectively gives us
field-sensitivity but also captures the fact that LLVM-IR does
not have any semantically relevant restrictions with regards
to structure fields. As with C/C++ code, structure fields are
mostly used for offset calculation but do not provide semantic
guarantees about access sizes or bounds.

Users of the analysis can query potentially interfering
accesses to determine if the value of a load can be predicted
or a store is effectively dead. The query results are implicitly
filtered to hide accesses that are known to not affect the given
instruction, e.g., due to their offset and size or due to reach-
ability and dominance (ref. Section IV-B2). This is especially
important when the underlying object has unanalyzable uses
but we can show that the user provided access cannot be
affected by those.

A potentially interfering access is presented as “exact” if it
matches the offset and size of the given load or store. For most
purposes we are only interested in exact matches and most
users will conservatively give up for non-exact ones. There is
an exception however if a range of memory is only initialized
with zero-bytes, e.g., NULL values. Even if we cannot predict
the offset of each access precisely we still can deduce that a
load from anywhere in the entire underlying memory region
is effectively resulting in a zero value. This is important to
replace loads of the thread states array (ref. Figure 3) at a
statically unknown index, namely the thread id, with a zero
value if all non-initialization writes to the array are (assumed



to be) dead. Thus, if we can statically show that no individual
thread ICV state is ever created, we can eliminate loads.

2) Lifetime-Aware Reachability and Dominance Analysis:
It is common practice to use reachability and dominance
to reason about the content of memory. Assuming a single
threaded environment or no synchronization events between
accesses we can, for example, perform the following deduc-
tions. If a write cannot reach a load it will not affect the loaded
value. If two writes dominate each other and also a load we
know that the writes are executed in order and can exclude
the first from the reasoning about potentially loaded values. If
a write dominates a load and each path from a second write
to the load needs to contain the first write, the second write
will not affect the loaded value.

To justify the absence of synchronization events between
writes we use information about aligned barriers and single
threaded execution as described in Section IV-C. Together
with existing LLVM capabilities this suffices to perform
intra-procedural reachability and dominance deductions. Our
optimizations provide these functionalities inter-procedurally.
To identify a reference point in the generally multi-entry
call graph of an application we look at the lifetime of the
underlying memory. That means we will first determine if there
is a common ancestor function for the accesses in question
such that the memory would not be available in the caller of
that function. These ancestor points can be identified for stack
allocations and shared memory at the moment. The former is
not available in the caller of the function that contains the stack
allocation, the latter is not available in the (unknown) caller of
a GPU kernel. If no common ancestor is found the accesses are
unrelated, otherwise we perform reachability and dominance
queries in the ancestor using the call sites that lead to the
accesses in questions. Unknown callers and callees, recursion,
loops, and irreducible control flow are among the things the
analysis has to account for.

3) Assumed Memory Content: In GPU programming, it is
common to have conditional writes that are performed only by
a single thread in the team as a form of broadcast. Most parts
of the OpenMP GPU runtime initialization and state updates
work this way. Namely, the main thread writes state and then
synchronizes with the team such that all threads can read it.

Figure 7 shows different ways in which conditional writes
can be implemented. In our OpenMP runtime we choose to
use conditional pointers, shown in Figure 7b, to avoid the
conditional execution illustrated in Figure 7a. However, both
schemes share the problem that domain knowledge is required
to justify the write actually happened. If there is no thread
zero there will also not be a write of value to state. In the
conditional execution case the written location is known but
the write does not dominate the aligned barrier that effectively
broadcasts the result to all threads. In the conditional pointer
case the write dominates the aligned barrier but the written
location is not known.

In practice, conditional writes prevent us from using (inter-
procedural) dominance relationship (ref. Section IV-B2) to
track the content of shared state. A simplified example is

shown in Figure 8a. These situations most often arise whenever
we have state updates in a structured code region, e.g., a
parallel. To keep our analysis generic we decided to place
assumptions into the runtime code as shown in Figure 8b.
However, domain knowledge could be used in the future to
guarantee at least, or exactly, one thread will have id zero.
Either allows the analysis to determine the value of the state
at the respective location and to employ dominance reasoning
to filter out non-interfering accesses.

4) Invariant Value Propagation: In addition to constants
we propagate values that are known to be invariant or re-
computable from invariant values. The most notable example
for such invariant values are the intrinsics that read the grid
dimensions from the GPU registers. We further can propagate
instructions and function arguments through memory if we can
show the same dynamic instance of those values is read by a
load. Sufficient conditions include the absence of recursion in
the function that allocates the underlying memory or global
memory that can only exists once.

C. Exclusive and Aligned Execution of Code

Reasoning about memory is difficult in sequential contexts
already but concurrent execution of memory accesses makes
it arguably more challenging. Due to synchronization between
threads it is possible that memory content changes between a
write and a read in the same straight line sequence of code.
An example is sketched in Figure 9a. This is even true if the
accesses themselves are not atomic or volatile in nature.

To be able to reason about memory accesses in a con-
current program we employ two related analyses. First, we
determine if an access is only executed by the main thread
of a team. This special reasoning was already present in the
OpenMP optimization pass in LLVM to improve the handling
of globalized memory (ref. Section IV-A). Second, we inter-
procedurally track the “aligned context” in which threads have
encountered, or will encounter, an aligned barrier without
other potentially synchronizing instruction on any path. An
aligned barrier indicates that all threads in the team will
arrive at the same barrier instruction. If there is no potentially
synchronizing instruction between the access and the previous

if (get_thread_id() == 0)
*state = value;

aligned_barrier();

(a) Conditional write using conditional execution of the write.

template<typename T>
void write(T *P, T &V, bool C) {
// get uninitialized shared memory (ref. [2])
static T SHARED(Dummy);
*(C ? P : &Dummy) = V;

}
write(state, value, get_thread_id() == 0);
aligned_barrier();

(b) Conditional write using a dummy location and conditional pointer.

Fig. 7: Two possible implementations of conditional writes.
For neither we can know that state holds value afterwards
without domain knowledge that guarantees at least one thread
will have thread id zero.



write(&TeamICVState.levels_var, 0, tid == 0);
...
// begin of a #pragma omp parallel
write(&TeamICVState.levels_var, 1, tid == 0);
...
use_in_parallel(TeamICVState.levels_var);
...
// end of a #pragma omp parallel
write(&TeamICVState.levels_var, 0, tid == 0);
...
use_after_parallel(TeamICVState.levels_var);

(a) Chain of effectively dominating accesses to the levels-var ICV
value that are not statically known to dominate each other due to the
conditional nature of the writes (ref. Figure 7).

write(&TeamICVState.levels_var, 0, tid == 0);
aligned_barrier();
__builtin_assume(TeamICVState.levels_var == 0);

(b) Assumption employed after broadcast barriers that can be effec-
tively seen as unconditional writes of the state.

Fig. 8: Simplified chain of effectively dominating writes (top)
which cannot be used to predict the memory state without
domain knowledge or additional assumptions (bottom).

*state = value;
synchronize();
synchronize();
use(*state);

(a) Straight line code with syn-
chronization effects that pre-
vent reasoning about memory
content.

*state = value;
aligned_barrier();
aligned_barrier();
use(*state);

(b) Straight line code with
“aligned” synchronization ef-
fects that do not prevent rea-
soning about memory content.

Fig. 9: Examples to illustrate how aligned synchronization
effects can be utilized to reason about execution order while
non-aligned synchronization allows complex interleaving of
threads which can invalidate common assumptions.

as well as succeeding aligned barrier we denote it to be in
an “aligned epoch”. If it is only preceded or succeeded by an
aligned barrier without interfering synchronizing event it is an
“aligned access”.

Two aligned non-atomic stores or stores that are executed
by the same (=main) thread can utilize dominance reasoning
(ref. Section IV-B2). The dominance relationship, together
with the aligned or same thread restriction (and the assumption
accesses cannot race) guarantees the accesses are executed in
“control flow order”. The idea is that we can choose to stall
threads that reach the dominated store just before it is executed
and until all other threads have stopped making progress. This
ensures that the dominated store is observed last before a load
dominated by both of them. Note that recursion and loops still
need to be taken into account.

If a load and a store are accessed in an “aligned epoch”
we can further utilize reachability between them to exclude
write effects that may not impact the given read. This is
sound because the two accesses are either between the same
two aligned barriers without other synchronization effects, in
which case the store has to follow the load and there is no
path back for any thread. Or, alternatively, the two accesses are
separated by at least the aligned barrier after the store which
has to be reached by all threads. Since that barrier cannot reach

the load, as the store could not either, no thread can reach the
load and the store has no effect on it.

D. Aligned Barrier Elimination

The GPU runtime and compiler generated code defensively
use barriers to ensure threads have a consistent view of
the memory. When transformations, such as de-globalization
and removal of runtime state, eliminate all non-thread-local
side-effects between barriers it may render them redundant.
However, only aligned barriers, thus those executed by all
threads in the team, are trivially removable in this case. Non-
aligned barriers might synchronize with threads that diverged
earlier, e.g., as part of the state machine implementation for
generic mode execution. To avoid having to reason about
thread divergence we utilize specific barriers, annotated as
aligned for the compiler, whenever possible.

Our barrier elimination pass detects consecutive aligned
barriers in the same basic block that do not have non-thread-
local side-effects in between them. During this identification
process we also consider the kernel entry and exit as implicit
aligned barriers. Whenever two such aligned barriers are found
we can eliminate one of them. This is especially useful if one
of the barriers is implicit, hence kernel entry or exit.

V. EVALUATION

For our experiments we used an NVIDIA A100 GPU in
a Gigabyte G242-Z11 Server containing an AMD EPYC
7532 (2.4Ghz) CPU, bundled with 256 GB DDR4 RAM. We
used CUDA 11.4.0 for all experiments and collected kernel
times with Nsight Compute CLI. Benchmarks were compiled
with NVCC 11.4 (GCC 7.5.0), LLVM/Clang (Nightly) based
on <: 81e9c90, and a development version (0) based
on <: a4ae55c available at https://github.com/jdoerfert/
llvm-project/tree/IPDPS22.

A. Benchmarks

For our performance study we looked at five scientific proxy
applications and compared the performance of their main GPU
kernel in different configurations. Our results are presented
relative to the performance of the OpenMP version compiled
with LLVM/Clang Nightly using the default GPU runtime.

XSBench and RSBench are two proxy applications for the
Open Monte Carlo (OpenMC) project. OpenMC [6] simulates
the transport of neutrons and photons using the Monte Carlo
methodology. Both proxies compute the continuous energy
macroscopic neutron cross-section lookup when studying neu-
tron transport and both are available in multiple programming
languages and frameworks. While XSBench [7] extracts one
of the main kernels in OpenMC, which is in our setup memory
bound, RSBench [8] provides a compute bound alternative im-
plementation. Note that for OpenMP we moved the reduction
out of the timed kernel to match the CUDA version.

GridMini is a proxy application for Lattice Quantum Chro-
modynamics (QCD). Lattice QCD simulates the strong inter-
actions of quarks and gluons on a four-dimensional discrete

https://github.com/jdoerfert/llvm-project/tree/IPDPS22
https://github.com/jdoerfert/llvm-project/tree/IPDPS22
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(a) Performance of XSBench relative to LLVM Nightly.
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(b) Performance of RSBench relative to LLVM Nightly.
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(c) Performance of TestSNAP relative to LLVM Nightly.
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(d) Performance of MiniFMM relative to LLVM Nightly.

Fig. 10: Performance evaluation for the four proxy applications (ref. Section V) on an NVIDIA A100 GPU normalized to
performance of LLVM Nightly. Values over 1 indicate improvements and values below denote slowdowns.

space-time grid, and provides crucial input to theoretical nu-
clear and particle physics. GridMini is a substantially reduced
version of Grid [9], a new C++ lattice QCD library developed
for highly parallel computer architectures. We modified the
application to load the loop upper bound by value to more
closely match the CUDA version.

TestSNAP is a proxy for the SNAP force calculation in
the LAMMPS molecular dynamics package [10, 11], which
contains synthetic inputs (neighbor atom positions) and ref-
erence outputs (forces on atoms) for several different SNAP
models. It performs the force calculation repeatedly, checking
the results against the reference data. At the end it reports the
grind time (msec/atomstep) and RMS force error (eV/A).

MiniFMM is a proxy application developed by the Univer-
sity of Bristol for Fast Multipole Method (FMM) [12]. It solves
the Laplace equation in a three-dimensional polar coordinate
plane by applying the FMM, which uses a dualtree traversal
method and is a test case for dynamic task parallelism [13].

B. Performance and Resource Usage

For benchmarks such as RSBench (Figure 10b) that al-
ready exhibited CUDA-like performance, there is essentially
no difference between the performances of the new runtime
implementations and CUDA. The new runtime, as available in

the nightly build at the moment of writing this paper, created
a performance regression. However, the most recent develop-
ment branch solves this issue. For the XSBench (Figure 10a)
and MiniFMM (Figure 10d), we see considerable improvement
in performance in the latest development versions of the new
runtime, getting close to the CUDA implementation. When
using the new device runtime with assumptions enabled, the
XSBench application closes the gap to the cuda performance
by 5% difference. Although, there is still a difference between
CUDA and the new runtime for MiniFMM, this difference
is considerably reduced, with 1.85x improvements over the
old runtime, reducing it to approximately a factor of 0.5x.
Improvements in performance are directly proportional to the
reduction in kernel time, as seen in Figure Figure 11. For
TestSNAP, the supplied CUDA implementation used Kokkos
for which a one-to-one kernel mapping between OpenMP
kernels and Kokkos kernels could not be determined. For
GridMini, we are able to match the CUDA performance
in terms of GFlops, representing a substantial performance
improvement over LLVM nightly in relation to the new device
runtime as well as the old RT as shown in Figure 12. Note
that MiniFMM when compiled with LLVM nightly with the
new device runtime had a race condition which prevented



Build Kernel Time # Regs SMem

MiniFMM ./fmm.{cuda,omptarget}

Old RT (Nightly) 1.237 ms 70 8,288B
New RT (Nightly) n/a n/a n/a
New RT - w/o Assumptions 0 0.674 ms 52 8,300B
New RT 0 0.667 ms 43 8,300B
CUDA (NVCC) 0.426 ms 64 4,096B

RSBench ./rsbench -s large -m event

Old RT (Nightly) 0.992 s 162 2,336B
New RT (Nightly) 1.220 s 172 11,304B
New RT - w/o Assumptions 0 0.984 s 156 0B
New RT 0 0.982 s 153 0B
CUDA (NVCC) 1.025 s 102 0B

XSBench ./xsbench -s large -m event

Old RT (Nightly) 0.202 s 86 2,336B
New RT (Nightly) 0.205 s 94 11,304B
New RT - w/o Assumptions 0 0.152 s 80 0B
New RT 0 0.143 s 66 0B
CUDA (NVCC) 0.138 s 50 6B

TestSNAP ./test_snap.exe

Old RT (Nightly) 0.291 s 109 2,336B
New RT (Nightly) 0.207 s 117 11,304B
New RT - w/o Assumptions 0 0.187 s 92 3,076B
New RT 0 0.187 s 80 3,076B

Fig. 11: GPU kernel execution times (highest), shared memory
and register usage, and execution command for each app.

profiling. Absolute times for the longest running kernel in each
benchmark as well as the shared memory usage and register
counts are shown in Figure 11. Most performance benefits can
be traced to reducing and/or eliminating the shared memory
and register usage compared to LLVM Nightly.

Loop over-subscription assumptions have two effects in the
generated code. First, they reduces the live register count as
there is no loop carried state. Second, they remove control
flow edges which can enable generic compiler optimizations.
For XSBench, we observe a considerable reduction in register
usage (14) which comes with significant lower kernel execu-
tion time (-5.6%). Other benchmarks also require less registers
and control flow conditions, due to the eliminated loop carried
state, but they are missing secondary effects. Consequently, the
kernel execution time is not affected much.

C. Optimization Effects

In order to differentiate the effect of each optimization
introduced in Section IV we evaluated GridMini, XSBench,
and MiniFMM with one optimization disabled at a time. Sec-
tion IV-B1 introduces the field-sensitive access optimization.
It is then extended in Section IV-B2, IV-B3, and IV-B4. There-
fore, removing the first part implies removing all optimizations
in Section IV-B, while removing the other parts still allows
some field-sensitive access analysis to occur.

Improvements in XSBench and MiniFMM are directly
traceable to the base field-sensitive access optimization in
Section IV-B1. In the case of MiniFMM no other optimization

has any effects on performance. XSBench, on the other hand,
improves performance by 20% due to field-sensitive access
optimizations and an additional 10% from assumed memory
content optimization introduced in Section IV-B3.

Figure 13 shows the effect of the different optimizations
on GridMini. Field-sensitive access analysis optimization, and
its deviates, provides most of the performance boost, while
exclusive and align execution of code, and aligned barrier
elimination, Section IV-C and Section IV-D respectively, still
play an important role in achieving CUDA-like performance.

VI. RELATED WORK

In LLVM/Clang, OpenMP offloading support for GPUs was
first presented by [3, 4], proposing a control loop to coordinate
GPU threads for executing sequential and parallel regions
within an offloaded region, by implementing a state machine to
track execution semantics. Later [14] introduced the first front-
end based optimizations for Nvidia GPUs in LLVM/Clang,
related to choosing the number of teams and threads for
parallel loops to avoid idle threads and reduce register usage.
Recently [15] introduced a lowering of OpenMP 4.5 in the
IBM XL C/C++ compiler that executes without the control
loop state machine in a mode where all threads execute
in parallel, deemed SPMD mode of execution, when the
target offloaded region encloses a single parallel construct.
Since IBM XL C/C++ compiler is derived from Clang/LLVM,
those changes have been upstreamed to LLVM/Clang too.
The comparative analysis of multiple OpenMP compilers
by [16, 17] demonstrated severe performance issues in the
LLVM/OpenMP implementation among other compilers.

Regarding compiler-based optimizations on OpenMP, [18]
presented the TRegion interface which delayed the discovery
of SPMD regions into LLVM, by contrast to the Clang-
based approach, which enabled more kernels to execute in
SPMD mode. For host OpenMP, [19] demonstrated that
LLVM/Clang’s outlining approach hinders the application of
existing compiler optimizations. By analyzing the semantics
of OpenMP runtime functions, the authors re-enabled such
optimizations in the presence of OpenMP parallelism. In
addition to some ideas shared with [15], such as the device
function de-virtualization, they also mention SPMD code
generation for the distribute parallel loop constructs in
a target team region. [20, 21] proposed extensions to the
LLVM IR, in the form of intrinsics, to represent parallelism
present in OpenMP directives. However, those extensions are
hard to integrate in the existing LLVM/Clang infrastructure
and provide little benefit in semantic analysis in comparison
to other approaches [18, 19] that directly analyze OpenMP
runtime functions. Further, tools that translate between Ope-
nACC and OpenMP [22, 23] include optimizations designed to
resolve execution execution model mapping mismatches, both
on CPUs and GPUs, such as using nested parallelism and the
SIMD clause.
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Fig. 12: Performance of GridMini in GFlops/s as reported by the application per grid size L. Bars as shown in Figure 10.
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Fig. 13: Effect of optimizations on performance of GridMini in GFlops/s as reported by the application per grid size L.

VII. REMAINING CHALLENGES: OPENMP VS CUDA

Some challenges remain that prevent OpenMP from achiev-
ing complete performance parity with CUDA. Currently, ag-
gregate data types, like the configuration struct used in XS-
Bench, can only be passed to the device kernel by-reference.
This requires an extra load of the base pointer to access the
elements compared to passing the struct to the kernel by-
value. Additionally, certain constructs, e.g., parallel require
barriers at the start and end to synchronize the thread state.
These cannot always be removed especially if a work-shared
or distributed loop uses bounds loaded from memory. While
such bounds might be known to be invariant, their side-effect
will currently cause barrier elimination (ref. Section IV-D) to
consider the barrier as essential when it is in fact not. Note
that we addressed the loop bound issue manually for GridMini
prior to our evaluation by passing in the loop bound into the
target region; this matches the CUDA version. For XSBench
the same issue occurs and if addressed the OpenMP register
count (ref. Figure 11) will match the CUDA version as well.

Additionally, missed optimizations can cause leftover ab-
stractions in the runtime. The optimizations mentioned in IV-A
are responsible for transforming an OpenMP region into a
kernel-like form if it is not in one already. If either of these
optimizations fail, the OpenMP region will necessarily require
additional overhead for the state-machine or the data-sharing
stack. For this reason, we provide compiler diagnostics for
missed optimizations using -Rpass-missed=openmp-opt and
-Rpass-analysis=openmp-opt.

VIII. CONCLUSION

In this paper, we proposed a co-design methodology for
optimizing parallel code targeting accelerators, GPUs in par-
ticular, that re-designs the runtime API and its internals for a
near-zero overhead execution through compiler optimization.
Specifically, our approach exposes runtime semantics and state
to the compiler to perform aggressive optimization, removing
or folding runtime state, and simplifying the control flow
of parallel loops, in parts with the help of user provided
assumptions. The evaluation results show that our proto-
type implementation in LLVM/OpenMP GPU offloading can
significantly improve the performance over previous LLVM
versions, and oftentimes match CUDA performance without
sacrificing the versatility and portability of OpenMP.
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