
Efficient Execution of OpenMP on GPUs

Joseph Huber

Oak Ridge National Laboratory

Oak Ridge, USA

huberjn@ornl.gov

Melanie Cornelius

Illinois Institute of Technology

Chicago, USA

mdooley1@hawk.iit.edu

Giorgis Georgakoudis

Lawrence Livermore National Laboratory

Livermore, USA

georgakoudis1@llnl.gov

Shilei Tian

Stony Brook University

Stony Brook, USA

shilei.tian@stonybrook.edu

Jose M Monsalve Diaz

Argonne National Laboratory

Lemont, USA

jmonsalvediaz@anl.gov

Kuter Dinel

Düzce University

Düzce, Turkey

kuterdinel@gmail.com

Barbara Chapman

Stony Brook University

Stony Brook, USA

barbara.chapman@stonybrook.edu

Johannes Doerfert

Argonne National Laboratory

Lemont, USA

jdoerfert@anl.gov

Abstract—OpenMP is the preferred choice for CPU parallelism
in High-Performance-Computing (HPC) applications written in
C, C++, or Fortran. As HPC systems became heterogeneous,
OpenMP introduced support for accelerator offloading via the
target directive. This allowed porting existing (CPU) code onto
GPUs, including well established CPU parallelism paradigms.
However, there are architectural differences between CPU and
GPU execution which make common patterns, like forking and
joining threads, single threaded execution, or sharing of local
(stack) variables, in general costly on the latter. So far it was
left to the user to identify and avoid non-efficient code patterns,
most commonly by writing their OpenMP offloading codes in a
kernel-language style which resembles CUDA more than it does
traditional OpenMP.

In this work we present OpenMP-aware program analyses and
optimizations that allow efficient execution of the generic, CPU-
centric parallelism model provided by OpenMP on GPUs. Our
implementation in LLVM/Clang maps various common OpenMP
patterns found in real world applications efficiently to the GPU.
As static analysis is inherently limited we provide actionable and
informative feedback to the user about the performed and missed
optimizations, together with ways for the user to annotate the
program for better results. Our extensive evaluation using several
HPC proxy applications shows significantly improved GPU kernel
times and reduction in resources requirements, such as GPU
registers.

Index Terms—OpenMP, Offloading, Optimization, LLVM,
GPU

I. INTRODUCTION

The triumph of general-purpose computing on GPUs in

HPC was driven in large parts by the development of explicit

“kernel languages”, especially CUDA. In contrast to traditional

HPC programming languages, like C, C++, or Fortran, which

were designed with a CPU execution model in mind, kernel

This manuscript has been authored by UT-Battelle, LLC, under contract DE-
AC05-00OR22725 with the US Department of Energy (DOE). The publisher ac-
knowledges the US government license to provide public access under the DOE
Public Access Plan (https://energy.gov/downloads/doe-public-access-plan).

languages are tailored towards the execution model of a

GPU. While on first glance those might look similar, there

are conceptual differences that inherently limit the ability to

efficiently execute an arbitrary CPU-centric program on a GPU.

Nevertheless, common CPU languages have been extended to

target GPUs in an effort to natively integrate portable GPU

programming into legacy HPC software.

One promising candidate to bring offloading capabilities to

existing codes is OpenMP. While OpenMP offloading provides

a native way to program GPUs of various vendors, it inherently

follows the CPU-centric model that is fundamental to the base

languages. Further, OpenMP offloading was designed as an

extension to the existing CPU parallelism capabilities which

means that not only the base language semantics but also the

parallelism paradigms do often not match the native execution

model of the GPU.

The artificial code in Figure 1 showcases how the OpenMP

programming model and the GPU execution model diverge.

First, OpenMP requires the right hand side of the team_val

assignment to be executed only by the main thread of each

team. Given that each team runs on a streaming multiprocessor

(SM) which executes 32 (or more) threads simultaneously, the

compiler has to ensure the side-effects of compute for all but

one thread do not become visible. Once a parallel directive is

reached by the main thread, which could also happen inside

compute, the user expects some, if not all, of the threads in the

SM to execute the parallel region. Thus, the compiler needs to

guard arbitrary code across translation units, e.g., if compute

is defined elsewhere, while allowing parallel execution of

encapsulated parallel directives. Further, code like compute can

be executed from sequential and parallel regions alike, both

should execute correctly and provide the expected execution

behavior with regards to nested parallelism.

In addition to thread management, the compiler has to

implement local variable sharing in an execution environment

978-1-6654-0584-3/22/$31.00 © 2022 IEEE 41

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://energy.gov/downloads/doe-public-access-plan)

that does not support it. In the example, team_val as well as

thread_val are local (stack or automatic) values of which the

address is passed into the combine function. Without further

knowledge of their use the compiler needs to assume these

variables are potentially read or written by another thread.

While this is not a problem on CPUs which allow cross thread

accesses to the “stack”, it is on a GPU where these variables

would by default reside in thread-local memory.

#pragma omp target teams distribute
for (int block_id = 0; block_id < NBlocks; ++

block_id){
auto team_val = compute(); // once per team
#pragma omp parallel for
for (int thread_id = 0; thread_id < NThreads; ++

thread_id){
auto thread_val = compute(); // once per thread
combine(&team_val, &thread_val);

}
}

Fig. 1: OpenMP target region to show how the CPU-centric model diverges
from the native GPU execution model.

In this work we introduce novel, inter-procedural compiler

optimizations to bridge the gap between the CPU-centric

OpenMP programming model and the GPU execution model.

First we discuss background and related work in Section II

and III, respectively. In Section IV we detail our approach,

including implementation notes, optimization descriptions, and

user interaction strategies. A thorough evaluation of four

HPC proxy applications is presented in Section V. We show

that these codes are affected by the same implementation

complexities described for Figure 1 and that our approach

effectively eliminates the associated overheads. Section VI

concludes the paper and provides thoughts on future efforts.

The main contributions of this work are:

• novel OpenMP-aware inter-procedural analysis and opti-

mizations that operate on the LLVM-IR level,

• effective translation of HPC kernels from the CPU-centric

OpenMP model to the GPU execution model,

• automatic optimizations for common cases combined with

actionable user feedback and assumption handling when

static information is insufficient, and

• integration into the community version of the LLVM

compiler including documentation for the user feedback

and compiler-usable program assumptions.

While our techniques are applicable for any GPU, we

explicitly do not address the technical challenges of:

• shortcomings in the LLVM/OpenMP GPU runtime [1],

unrelated to compilation, which hamper performance

compared to kernel languages,

• secondary effects of our optimizations, e.g., source sim-

plifications that lead to changed heuristics (unroll, inline,

etc.) which decrease program performance, and

• the effect on AMD and Intel GPUs as the LLVM

implementation does not target the latter and the former

is not mature enough to run our benchmark set.

II. BACKGROUND

OpenMP offloading features a host-centric execution mode.

The host (CPU) coordinates scheduling and synchronization

of target tasks (i.e. kernels), as well as memory allocation and

movement between host and devices (e.g. GPUs and FPGAs).

On the device, the main thread of a team begins execution of

the target task. The teams directive controls the creation of a

league of teams. Each team begins with a single main thread

and it can spawn other worker threads by using the parallel

directive. The worksharing directives for and distribute

allow scheduling loop iterations across threads in a team and

teams in a league, respectively.

GPU execution models have a similar hierarchical organiza-

tion. GPUs are composed of multiple streaming multiprocessors

(SM), each capable of executing several threads grouped into

scheduling units that execute at the same time (e.g. a warp in

NVIDIA GPUs and wavefront for AMD GPUs).

When lowering OpenMP onto GPUs it is common to map a

team to an SM and the threads of a team to hardware threads

within the SM. Figure 2 shows the corresponding mapping

between the GPU execution model and the OpenMP execution

model. The figure also illustrates what memory kinds are

accessible by the thread(s) on each level.

streaming

multiprocessor

(SM)

global

memory

shared

memory

main thread

worker thread

thread

local

memory /

registers

league of teams

team of threads

Fig. 2: Simplified mapping of the OpenMP programming model to the GPU.
Top row: Outermost parallelism across streaming multiprocessors (SMs) onto
which OpenMP teams are mapped. All threads on this level share the global
memory. Middle row: A single SM corresponding to a team of threads in
OpenMP. Both shared and global memory are accessible by these threads.
Bottom row: A single GPU/OpenMP thread which has exclusive access to
local memory and registers.

III. RELATED WORK

OpenMP target offloading was introduced in version 4.0,

firstly adopted to the Intel Xeon Phi co-processor, and an ARM

based DSM by Texas Instrument [2], [3]. In LLVM/Clang,

OpenMP offloading support for GPUs was first presented

by [4], [5], proposing a control loop to coordinate GPU

threads for executing sequential and parallel regions within an

offloaded region, by implementing a state machine to track

42

execution semantics. [6] introduce in the IBM XL C/C++

compiler a lowering of OpenMP that executes without the

control loop state machine in a mode where all threads execute

in parallel, deemed SPMD mode of execution, when the

target offloaded region encloses a single parallel construct.

Since IBM XL C/C++ compiler is derived from Clang/LLVM,

those changes have been upstreamed Clang/LLVM too. [7]

introduced the first front-end based optimizations for NVIDIA

GPUs in LLVM/Clang, related to choosing the number of

teams and threads for parallel loops to avoid idle threads and

reduce register usage. The (PGI) Fortran front-end, known as

Flang, supports OpenMP offloading via the LLVM/OpenMP

runtimes [8]. The comparative analysis of multiple OpenMP

compilers by [9], [10] demonstrated severe performance issues

in the LLVM/OpenMP implementation, among other compilers.

This work builds upon designs and implementations from this

initial LLVM/Clang support of GPU offloading. It differs in

that it proposes simplifying code generation in the front-end to

enable semantic analysis and optimization in LLVM (middle-

end), which results in significant performance improvements,

as we show later in the paper.

Regarding compiler-based optimizations on OpenMP, [11]

presented the TRegion interface which delayed the discovery

of SPMD regions into LLVM, by contrast to the Clang-based

approach, which enabled more kernels to execute in SPMD

mode. For host OpenMP, [12] demonstrated that LLVM’s

outlining approach hinders the application of existing compiler

optimizations. By analyzing the semantics of OpenMP runtime

functions, authors re-enabled such optimizations in the presence

of OpenMP parallelism. In addition to some ideas shared

with [11], such as the device function de-virtualization, they

also mention SPMD code generation for the distribute

parallel loop constructs in a target team region. [13], [14]

proposed extensions to the LLVM IR, in the form of intrinsics,

to represent parallelism present in OpenMP directives. However,

those extensions are hard to integrate in the existing LLVM/-

Clang infrastructure and provide little benefit in semantic

analysis in comparison to other approaches [12], [11] that

directly analyze OpenMP runtime functions. Further, tools that

translate between OpenACC and OpenMP [15], [16] include

optimizations designed to resolve execution execution model

mapping mismatches, both on CPUs and GPUs, such as using

nested parallelism and the SIMD clause. Our work concurs to

previous approaches on the necessity of semantic analysis for

parallelism in the IR, OpenMP in this case, but significantly

expands both the analysis scope and applicability, extends

existing optimizations, and proposes new ones.

While we are concerned with efficient GPU execution of

CPU-centric codes, there is a body of work to efficiently

translate codes in the opposite direction [17], [18], [19]. Similar

to our work, reverse transformations require explicit optimiza-

tions to bridge the conceptual execution mode differences

effectively. Differently to our work, those efforts aim for

best effort performance translating from the, typically faster,

GPU execution to CPU, while we strive to achieve parity in

performance with native programming models on GPUs.

IV. OPENMP-AWARE LLVM-IR ANALYSES AND

OPTIMIZATIONS

We implemented the analysis and optimization of OpenMP

programs as a pass in the default LLVM optimization pipeline.

It is run early on the entire module and again late on each

strongly connected component of call graph. Dealing with

OpenMP on the LLVM intermediate language (LLVM-IR)

level has benefits and drawbacks [20]. While we loose syntactic

structure of the pragmas embedded in high-level source code,

we gain access to existing analysis passes and the ability to

write data-flow analysis in a familiar manner. Further, our

work is applicable to C/C++ input from LLVM/Clang and

Fortran input from LLVM/Flang1. To embed OpenMP domain

knowledge into the LLVM-IR we look for uses of known

LLVM/OpenMP runtime functions that have been emitted by

the front-end in response to user pragmas.

To deal with abstractions introduced during the OpenMP

lowering and with the complexity of real world applications we

designed our optimizations to be inherently inter-procedural.

As such, the analysis performs best if it has full visibility of

the kernel, called functions, and the callers of all functions.

The latter is important as otherwise an external caller could

call a routine from a context where a desired transformation

might be illegal.

We explicitly avoided relying on aggressive inlining to

bypass external callers as it comes with various side-effects,

including an often significant compile time impact. Said differ-

ently, we believe the inliner heuristic for a given architecture

should be in charge of inlining decisions rather than any non-

inlining related optimization. To nevertheless avoid precision

loss of our analysis in the presence of externally visible

functions we performed aggressive internalization. In essence,

we duplicate functions with external linkage2 to create an

internal only copy, used when invoked from a kernel within

the translation unit, and an external only copy, which is used

otherwise. This way we preserve semantics for all unknown

external callers while the current translation unit has full

visibility of each usage and can act accordingly.

A. Optimizing Variable Placement

The example in Figure 1 features two variables with stack (or

automatic) storage, namely team_val and thread_val. Such

local variables, as well as arguments of device functions, are

commonly allocated on the stack if their address is taken. Most

CPU architectures allow different threads to freely access any

variables allocated on the stack. When this example is compiled

for the host, the declarations of these variables are therefore not

treated differently by the compiler. However, if the architecture

disallows accesses to local (stack) variables across threads the

situation changes drastically.

1LLVM/Flang is technically not mature enough to emit LLVM-IR but the
OpenMP code generation is shared between Clang and Flang which means
the input is indistinguishable for our optimization.

2Not all linkage types allow this and we take this into account. An
optimization remark (ref. Section IV-D) is emitted if internalization fails.

43

On the GPU, as illustrated in Figure 2, only the thread itself

has access to local memory, or registers. This means that local

variables cannot be placed there if the programming model

allows the user to access them from different threads.

Prior to this work, thus LLVM 12 and earlier, Clang would

“globalize” all local variables whose address may be taken

during the generation of the LLVM-IR. This means, the local

variables would instead be allocated (and deallocated) from

global or shared memory through an OpenMP GPU device

runtime call. Clang used syntactic information to combine all

globalized locals in a structure type and allocate them all at

once, preferably as a struct-of-arrays (SoA) to allow coalesced

accesses by the threads in a warp. Further, if the globalization

was not nested syntactically in a target region, e.g., it happens in

a device function, Clang generated runtime checks to determine

how many threads reached the program location. Depending

on the result, either local memory (aka. registers), a single

copy of the globalized structure, or the SoA version for an

entire warp would be used. As a performance improvement,

Clang would not globalize any variables for code executed in

SPMD mode (ref. Section IV-B) or when the command line

option -fopenmp-cuda-mode was used. However, both are in

general unsound and the former, using local memory in SPMD

mode, fails for the code illustrated in Figure 3.

#pragma omp target parallel
{
int Lcl = 42 + omp_get_thread_num();
#pragma omp barrier
if (omp_get_thread_num() == 0)
Ptr = &Lcl;

#pragma omp barrier
// Ptr is the address of thread zero's Lcl for all
assert(*Ptr == 42 && "Cross-thread access failed");
}

Fig. 3: OpenMP target region executed in SPMD mode with cross thread
accesses to the local variable Lcl which consequently requires globalization.

In this work, we removed the incorrect SPMD mode

optimization performed by Clang and instead globalize all

variables that are potentially shared. Furthermore, we instead

globalize each variable individually rather than combining

them into a single allocation. Globalizing all eligible variables

prevents miscompilations while simplifying the code generation,

and allows for each variable to be analyzed individually. These

changes significantly decrease the performance of OpenMP

device code in favor of correctness. To recover performance, we

developed a novel inter-procedural optimization in the middle-

end to effectively undo globalization or utilize a specialized

and more efficient implementation.

An example showing the difference in globalization using

LLVM/Clang 12 and our new method is shown in Figure 4.

Before our work, the generated code would not be optimized

further, causing globalization to remain on the device and

significantly impacting performance. When generating the

OpenMP code, the front-end can only perform simple intra-

procedural analysis. Because the front-end has a limited view of

the code, it will introduce globalization whenever it is possible

that a variable could be shared between threads in order to

maintain OpenMP semantics. If, for example, the combine

function used in Figure 4a is later known to not share the

pointer arguments with other threads, we can safely undo the

globalization and use local memory instead.

#pragma omp begin declare target
double device_function(float Arg) {
double Lcl = ...;
combine(&Arg, &Lcl);
return Lcl;

}
#pragma omp end declare target

(a) Generic device function with two stack variables that are potentially shared among

threads and consequently require globalization.

double device_function(float Arg) {
double Lcl = ...;
float* ArgPtr;
double* LclPtr;
char *Mem;
if (__runtime_is_spmd()) {
ArgPtr = &Arg;
LclPtr = &Lcl;

} else {
int WarpSize = __runtime_get_warp_size();
int Size = 12; // sizeof(Arg) + sizeof(Lcl)
if (__runtime_in_active_parallel())
Size *= WarpSize;

Mem = __runtime_coalesced_alloc(Size);
// Mem is the same for all threads in the warp.
int WId == __runtime_get_warp_id();
if (__runtime_in_active_parallel()) {
ArgPtr = &Mem[4 * WId];
LclPtr = &Mem[4 * WarpSize + 8 * WId];

} else {
ArgPtr = &Mem[0];
LclPtr = &Mem[4];

}
}

*ArgPtr = Arg;

*LclPtr = Lcl;
combine(ArgPtr, LclPtr);
if (!__runtime_is_spmd())
__runtime_coalesced_free(Mem);

return Lcl;
}

(b) Pseudo-code illustrating the lowering of Fig. 4a until LLVM 12, including the

miscompilation introduced by using stack memory for SPMD mode execution.

double device_function(float Arg) {
double Lcl = ...;
float* ArgPtr = __runtime_alloc(4 /* sizeof(float)

*/);
double* LclPtr = __runtime_alloc(8 /* sizeof(

double) */);

*ArgPtr = Arg;

*LclPtr = Lcl;
combine(ArgPtr, LclPtr);
__runtime_free(ArgPtr);
__runtime_free(LclPtr);
return Lcl;

}

(c) Pseudo-code illustrating the lowering of Fig. 4a since LLVM 13. Coalescing and

aggregation have been removed, as well as the SPMD mode special case.

Fig. 4: A generic OpenMP device function (4a) with the conceptual lowerings
of performed by LLVM/Clang 12 (4b) and Clang 13 (4c).

To this end, we developed two optimizations that can undo

globalization in the compiler’s middle-end. The first is a

generic inter-procedural heap-to-stack transformation that will

determine if “heap memory”, or technically anything returned

by an allocator function known to LLVM, can be replaced by

“stack memory”, thus an LLVM-IR alloca instruction. The

44

transformation performs two separate checks of which at least

one must succeed. The first will follow all uses of the heap

pointer inter-procedurally and report if any of the uses might

expose the pointer to another thread. The second will determine

if the associated deallocation call has to be reached. In both

cases the analysis has to consider potential synchronization

between threads.

If heap-to-stack is not able to modify the storage location of

a variable, we employ a second inter-procedural transformation

that aims to replace the runtime calls with statically allocated

shared memory. In contrast to the runtime allocation, which

also uses a shared memory buffer organized as a stack, the

newly introduced static allocation eliminates all instructions

associated with the globalization and allows further memory

optimizations, e.g., store-to-load-forwarding, as the lifetime and

exact location are known to the compiler. The transformation

inter-procedurally determines if the runtime allocation is only

executed by the main thread of the OpenMP team. If so, the

runtime allocation and deallocation are replaced by a (global)

static allocation in shared memory. While this causes the

allocation to be present during the entire lifetime of the kernel,

we have not encountered a problematic case that would have

benefited from an allocation on a software managed shared

memory stack instead.

Figure 5 illustrates how Figure 4a could be connected to

other program parts. The combine function in Figure 5a together

with either call site of the device_function, thus Figure 5b

or 5c respectively, exhibit the three potential outcomes for the

globalized variables, Arg and Lcl, featured in Figure 4a.

double combine(float* ArgPtr, double *LclPtr) {
unknown(ArgPtr);
return *LclPtr + *ArgPtr;

}

(a) A potential implementation of the combine function used in Figure 4a.

void one_thread_only() {
#pragma omp target teams
device_function(get_arg());

}

(b) A potential call site of the device_function shown in Figure 4a that enters

it with a single thread per team.

void many_threads() {
#pragma omp target teams
#pragma omp parallel
device_function(get_arg());

}

(c) A potential call site of the device_function shown in Figure 4a that enters

it with multiple threads per team.

Fig. 5: Functions to provide specific context to the generic code shown in
Figure 4a.

If all call sites of device_function are known to be

executed only with the main thread of an OpenMP team,

e.g., as shown in one_thread_only, the optimization outcome

is as sketched in Figure 6a. Both transformations, heap-to-

stack and the static shared memory allocation, triggered for

one variable respectively. Lcl was only read in the combine

function and is therefore simply replaced with local (stack)

memory. Arg escaped into the unknown function and could

double device_function(float Arg) {
double Lcl = ...;
// Allocate Arg in shared memory, equivalent to a

local
// copy with the CUDA __shared__ annotation.
#pragma omp allocate(Arg) allocator(

omp_cgroup_mem_alloc)
combine(Arg, &Lcl);
return Lcl;

}

(a) Optimized version of Figure 4a when the only call site is shown in Figure 5b and

the combine function is the one from Figure 5a.

double device_function(float Arg) {
double Lcl = ...;
// Keep one runtime allocation per-thread rather

than
// allocating #max-threads * 4 bytes statically.

Also
// emit optimization remarks as described in

Section IV-D.
float* ArgPtr = __runtime_alloc(4 /* sizeof(float)

*/);

*ArgPtr = Arg;
combine(ArgPtr, &Lcl);
__runtime_free(ArgPtr);
return Lcl;

}

(b) Optimized version of Figure 4a when the any call site is unknown or Figure 5c is

one. The combine function is assumed to be the one from Figure 5a.

Fig. 6: Potential optimized versions of Figure 4a depending on the context in
which it is compiled.

there be shared among multiple threads. However, as long as

the runtime call allocating memory for Arg is known to be

executed only by the main thread in an OpenMP team we

can use statically allocated shared memory. This is effectively

equivalent to using an OpenMP allocator or CUDA __shared__

annotation 3. If the runtime call allocations could be reached

by a thread other than the main thread, e.g., if Figure 5c

is a call site of device_function, we do not create a static

allocation but instead emit an optimization remark to the user

(ref. Section IV-D). As noted in Figure 6b, it would be possible

to create a static allocation in shared memory even for this case.

However, it would require us to scale the allocation that is live

for the entire target region by the maximal number of threads in

a team. These optimizations allow users to disable globalization

and get the performance of using -fopenmp-cuda-mode without

sacrificing correctness. So far, we have not found a case where

globalization for many threads was actually required and not

only a side-effect of insufficient static analysis information.

While we allow users to opt-in to large static allocations, we

believe it is often more useful to indicate the problem via

a remark (ref. Section IV-D) together with actionable advice

on how to provide the required domain knowledge for the

heap-to-stack transformation to become valid.

3It is worth noting that this will automatically move static sized arrays
allocated in an OpenMP target region and used subsequently in an OpenMP
parallel region into shared memory, a transformation that CUDA programmers
are applying explicitly with the __shared__ annotation on buffers.

45

B. Optimizing Thread Execution

The OpenMP programming model follows the multi-threaded

CPU execution model where there is a single active thread,

deemed the main thread, at the beginning of each (implicit)

teams region that spawns or activates worker threads for parallel

computation. However, this model deviates from the SPMD

execution model of GPUs, exposed by the kernel-language

model, in which all threads start execution at kernel launch.

Conceptually, when offloading a target region, the compiler

needs to emulate a sequential region on the GPU by guarding

the effects of all but the main thread of a team until a parallel

region is reached and those threads become active.

In generic (execution) mode, introduced by [4], the threads

of a team are separated at the beginning of a target region into

the main thread and worker threads. Workers enter a front-

end generated state machine while the main thread executes

the user code. When a parallel directive is encountered the

outlined function containing the parallel region code is passed

from the main thread to the workers for parallel execution

before they go back into their waiting state. However, to avoid

costly indirect calls through function pointers, LLVM/Clang

performed simple static analysis in the front-end. Effectively, an

if-cascade was embedded in the state machine which checked

the communicated function pointer against known parallel

regions in order to call them directly [4]. Since parallel regions

may be unknown, e.g., hidden under functions defined in other

translation units, it is not always possible to list them all

statically. An indirect fallback call after the if-cascade was

emitted as a catch-all.

The generic mode incurs overhead through the diverging

control flow and synchronization required by the state machine.

To avoid those overheads, another mode of execution, the so-

called SPMD mode [5], was introduced. If syntactic analysis

in the front-end determines that it is safe to execute a target

region with all threads, e.g., the OpenMP target directive is

syntactically combined with the parallel directive, SPMD

mode is used. In this mode all threads are active at the kernel

beginning, effectively replicating the kernel-language model.

However, syntactic analysis in the front-end for determining

the applicability of SPMD mode is inherently limited. If there

is non-trivial code executed by the OpenMP main thread alone

generic mode was required.

[11] introduces the first SPMDzation optimization that

transforms a generic mode kernel into an SPMD mode kernel.

Through guarding of side-effects in sequential regions, and

broadcasts of values where necessary, a consistent program

state was achieved while keeping all threads active. Further, for

generic mode execution, the state machine was customized via

inter-procedural reachability information to completely avoid

the indirect fallback call.
1) Contributions: In this work we extend those ideas, make

them applicable to realistic applications, and perform novel

optimizations to increase their efficiency.
2) Eliminating Function Pointers in the If-Cascade.: The

use of function pointers to communicate what parallel region

to execute next is necessary for the general case as the parallel

region might be compiled separately from the target region.

However, taking the address of a function can lead to spurious

call edges assumed by the GPU vendor toolchains that increase

the required register count4. Our optimization eliminates the use

of function pointers if it can prove that all target regions which

may reach a particular parallel region are known statically.

Instead of the parallel region address we introduce a new

unique identifier that is used as a stand-in replacement when

the main thread informs the workers that the particular parallel

region has to be executed next. If unknown target regions

may reach a parallel region, we cannot make them aware of

the relationship between the parallel region and the generated

identifier. Consequently, we need to keep the function pointer

communication. An optimization remark (ref. Section IV-D) is

issued in this case.

3) Expanding the Scope and Efficiency of SPMDzation.:

Compared to previous work [6], [11] we perform SPMDzation

based on inter-procedural analysis at the LLVM-IR level.

Starting from generic mode kernels, all sequentially executed

code is analyzed inter-procedurally and all encountered side-

effects are check for compliance with our local guarding

scheme. Only if the side-effects are always reached by the

main thread alone we employ SPMDzation. This limitation is

self-imposed as our experiments show that a more complex

guarding alternative, needed to handle single and multi-threaded

execution, often hampers performance. If a guarded code

generates values used outside the guarded region we employ

the broadcast logic described by [11].

Our SPMDzation analysis explicitly interacts with the data

placement optimization (ref. Section IV-A). This allows us to

avoid guards and broadcasts for OpenMP specific allocation

related code which effectively does not require it.

To minimize the number of guarded regions, and the associ-

ated synchronization overhead, we perform local instruction

reordering prior to guard generation. Figure 7 illustrates this

optimization for two side-effects that are separated by some

SPMD amenable code, e.g., side-effect free code or annotated

function calls (ref. Section IV-D). While by default each side-

effect requires a guarded region and one barrier (two if we

need to broadcast values), we can amortize the cost if multiple

side-effects share the same guarded region. Our reordering

optimization groups side-effects at the basic block level without

violating data-flow dependencies among them to minimize the

number of required guarded regions.

C. Optimizing OpenMP Runtime Calls

The device runtime, roughly the GPU equivalent of the

host OpenMP runtime, provides OpenMP utility functions,

e.g., to split a work sharing loop at runtime based on a

dynamically chosen schedule policy. The flexibility of the

OpenMP programming model requires the device runtime to

work in generic and SPMD mode and across all possible GPU

kernel launch parameters.

4The problem is described in more detail here: http://llvm.org/PR46450

46

#pragma omp target teams
{
A[0] = ...; // Access needs guarding in SPMD mode.
< SPMD amenable code >
B[0] = ...; // Access needs guarding in SPMD mode.
#pragma omp parallel
{ ... }

}

(a) Generic mode region with side-effects in the sequential part interleaved with SPMD

amenable code, e.g. side-effect free code.

#pragma omp target teams
{
if (omp_get_thread_num() == 0)
A[0] = ...;

#pragma omp barrier
< SPMD amenable code >
if (omp_get_thread_num() == 0)
B[0] = ...;

#pragma omp barrier
#pragma omp parallel
{ ... }

}

(b) Local guarding as described by [11] which requires up to two barriers per guarded

instruction to ensure consistency.

#pragma omp target teams
{
< SPMD amenable code >
if (omp_get_thread_num() == 0) {
A[0] = ...;
B[0] = ...;

}
#pragma omp barrier
#pragma omp parallel
{ ... }

}

(c) Optimized code with a single guarded region generated through grouping of side-

effect instructions prior to guarding.

Fig. 7: Generic mode region (top) that is amenable to SPMDzation together with
the naive guarding scheme [11] (middle) and our optimized result (bottom).

In this work we optimize runtime calls statically if the

queried execution characteristics are known through OpenMP-

aware inter-procedural program analysis. So far, our optimiza-

tion tries to replace the following four categories of runtime

calls with constant values.

Execution Mode The runtime often handles generic and

SPMD mode differently and therefore checks the status in

various places. If the execution mode of all target regions

reaching a check is known and the same, execution mode

checks can be replaced by constants.

Parallel Level The parallel level is required to version ICV

values in OpenMP and to identify nested parallelism.

Tracking the parallel level and replacing dynamic checks

with constant values, allows to remove the sequential

fallback code path that would be required for nested

parallelism.

Thread Execution Runtime calls executed in generic mode

need to determine if they are reached by the main thread in

a sequential code region or by many threads in a parallel

region. We already track this information to create static

shared memory allocations and can consequently use it to

simplify runtime checks for which the result is statically

known.

Launch Parameters If the user provided a constant team

or thread (limit) as part of the target directive we can

statically replace queries of the GPU grid with such values.

This is especially important to improve work sharing loops

and reductions.

D. Compiler Remarks and User Assumptions

All optimizations described in this work come with optimiza-

tion remarks that inform and guide the user. The remarks are

identified by unique numbers and briefly describe the performed

transformation or missed opportunity. Each remark identifier

has a webpage5 with further explanation, an example code, and

actionable suggestions on how to improve the code in case the

remark represents a missed optimization opportunity. Figure 8

shows how remarks could look for the example configuration

discussed in Figure 5c.

The webpages for remarks identifying missed opportunities

describe the problem in more detail and, if available, suggest

ways to introduce domain knowledge into the compilation for

better static optimization results. Such information is usually

provided in form of C/C++ attributes (e.g., __attributes__

((noescape)), or the OpenMP 5.1 assumption directive we

integrated into LLVM/Clang for this work. As an example,

the webpage suggests enclosing problematic functions, e.g.,

ones defined in a separate translation unit, that are known to

be amenable to SPMDzation, thus that can be safely executed

by all threads in a team and not only the main thread, with

#pragma omp begin/end assumes ext_spmd_amenable.

example.cpp:41:24: remark: Found thread data sharing
on the GPU. Expect degraded performance due to
data globalization. [OMP112]
[-Rpass-missed=openmp-opt]

double device_function(float Arg) {
ˆ

example.cpp:42:3: remark: Moving globalized variable
to the stack. [OMP110] [-Rpass=openmp-opt]

double Lcl;
ˆ

Fig. 8: Example remarks issues for the scenario illustrated in Figure 5c. The
remark identifier is shown in brackets.

V. EVALUATION

For our experiments we used a single GPU of a SuperMicro

SuperServers (1029GQ-TVRT) containing 4x NVIDIA Tesla

V100 GPUs (SXM2 w/32GB HBM2) and 2x Intel Xeon Gold

6152 CPUs (2.10GHz) bundled with 192GB DDR4 RAM. We

used CUDA 10.1 for all experiments and collected kernel times

with nvprof. Benchmarks were compiled with nvcc 10.1 (+ gcc

7.5.0), LLVM/Clang 12.0.1, and a development version based

on LLVM/Clang <: 29a3e3dd7bed. All benchmarks used

in this work are available in the accompanying artifact [21].

A. Benchmarks

For our performance study we looked at four scientific

proxy applications, part of the ECP proxy applications suite,

and compared the performance of their main GPU kernel

5All remark pages and information on how to extract the remarks is available
via https://openmp.llvm.org/remarks/OptimizationRemarks.html.

47

https://openmp.llvm.org/remarks/OptimizationRemarks.html

Section IV-A Section IV-B Section IV-C Section IV-D

heap-2-stack / shared CSM / SPMDzation RTOpt EM / PL Remarks

XSBench 3 / 0 n/a 5 / 1 3

RSBench 7 / 0 n/a 5 / 1 7

SU3Bench 4 / 0 (1) / 1 2 / 2 5

miniQMC 3 / 18 (1) / 1 3 / 2 22

Fig. 9: Optimization opportunities and remarks emitted for the benchmarked kernels. There were no missed opportunities but SPMDzation makes the custom
state machine (CSM) optimization obsolete. Runtime call optimizations (RTOpt) triggered for execution mode (EM) and parallel level (PL) queries.

in different configurations. The selected proxy applications

model real scientific workloads, are developed by domain

scientists, and are used across the HPC community to validate

compilers, runtimes, and systems in production. Each is

executed as presented by the original developers, with no

modification to their source code. On the other hand, we

avoid Rodinia benchmarks [22] since the small subset of

OpenMP target codes does not proxy real GPU applications.

Additionally, The SPEC Accel v1.3 benchmarks contain, by

design, exclusively SPMD regions without globalized variables

to optimize; this is because all compilers performed poorly

otherwise. The SPEChpc benchmark suite was not released

yet at the moment of writting this manuscript. Our results are

presented relative to the performance of the OpenMP version

compiled with LLVM 12. The kernel times listed in Figure 10

allow putting these relative numbers into perspective while

also identifying the benchmarked kernel. A brief introduction

into the applications is given in the following:

XSBench and RSBench are two proxy applications for

the Open Monte Carlo (OpenMC) project. OpenMC [23]

simulates the transport of neutrons and photons using the

Monte Carlo methodology. Both proxy applications compute

Build Time (s) SMem (KB) # Regs

RSBench: rsbench -s large -m event

CUDA (NVCC) 1.95 0.043 30

CUDA (Clang Dev 0) 2.09 0.043 32

LLVM 12 26.59 1.0 154

LLVM Dev 0 1.99 2.4 255

XSBench: XSBench -m event

CUDA (NVCC) 0.35 0.047 32

CUDA (Clang Dev 0) 0.35 0.047 32

LLVM 12 0.75 1.0 144

LLVM Dev 0 0.49 2.4 170

SU3bench: bench_f32_openmp.exe

CUDA (NVCC) 0.081 0 26

CUDA (Clang Dev 0) 0.082 0 26

LLVM 12 2.6 1.1 70

LLVM Dev 0 0.29 0.035 40

MiniQMC: check_spo_batched -m 2 -g "2 2 1"-w 80 -n 1

LLVM 12 0.24 1.1 254

LLVM Dev 0 0.11 0.47 196

Fig. 10: Cumulative GPU kernel execution times, shared memory and register
usage, as well as execution options for each benchmark and compiler.

the continuous energy macroscopic neutron cross-section

lookup when studying neutron transport and both are available

in multiple programming languages and frameworks. While

XSBench [24] extracts one of the main kernels in OpenMC,

which is in our setup memory bound, RSBench [25] provides

a compute bound alternative implementation.

SU3Bench is a micro benchmark intended to explore the

maturity and strategies of different programming models, HPC

architectures and systems (e.g., understand the maturity and

evolution of compilers). This application implements a sparse

matrix-matrix multiply routine for the Special Unitary group

of order 3 (hence SU(3)). This kernel is extracted from MLIC-

Lattice QCD [26], an application to study the quantum chro-

modynamics (QCD) theory that studies the strong interaction

between quarks and gluons. For the OpenMP evaluation we

used version 0 of the kernel which is a “native” (or CPU-style)

OpenMP implementation. The other OpenMP versions (1-4),

that are in style closer to the CUDA implementation, have not

been investigated.

miniQMC is a scientific proxy application that implements

state-of-the-art Quantum Monte Carlo (QMC) algorithms

solving the Schrodinger equation. It is mainly used in the

study of electronics molecular structures and 2D/3D solid state

systems. miniQMC is a simplified version of QMCPACK [27]

distributed independently. miniQMC is meant to test a subset

of the original scientific computation in different programming

models, algorithms and optimization methodologies. The mini-

application simulates electrons as they flow in a volume of

immobile atoms that for a bulk nickel oxide (NiO) arranged

in a 3D checkboard pattern. We evaluated the performance of

the batched spline evaluation as exposed by the most compute

intensive kernel of the check_spo_batched executable.

B. Optimization Opportunities

Figure 9 shows how often our optimizations triggered for

the selected kernels. There were no missed optimization oppor-

tunities. All globalized variables were successfully replaced by

stack or shared memory. We expect that some of the 18 shared

memory variables for miniQMC will be placed on the stack as

our analysis matures. Both generic mode kernels (SU3Bench

and miniQMC) were successfully converted to SPMD mode,

thus eliminating the need for the custom state machines we

could generate that did not require function pointers for

comparisons or indirect calls. Remarks are emitted for all

successful optimizations except for runtime call optimizations

because runtime calls might not originate in user code.

48

0

1

2

˜1.2×: simplified

globalization

base

1.69 1.69
1.53

2.14 2.14

G
P

U
k
er

n
el

p
er

fo
rm

an
ce

re
la

ti
v
e

to
L

L
V

M
1

2

LLVM 12 No OpenMP Optimization heap-2-stack

heap-2-stack&shared (=h2s2) h2s2 + RTCspec h2s2 + RTCspec + CSM

h2s2 + RTCspec + SPMDzation CUDA (LLVM Dev) CUDA (NVCC)

LLVM
Dev 0

(a) Performance of XSBench relative to LLVM 12 (base).

0

5

10

15

OoMbase

13.21 13.35
12.72

13.63

G
P

U
k
er

n
el

p
er

fo
rm

an
ce

re
la

ti
v
e

to
L

L
V

M
1

2

LLVM
Dev 0

(b) Performance of RSBench relative to LLVM 12 (base).

0

10

20

30

base 0.57 0.92

10.84

32.8 32.98

G
P

U
k
er

n
el

p
er

fo
rm

an
ce

re
la

ti
v
e

to
L

L
V

M
1

2

LLVM
Dev 0

(c) Performance of SU3Bench relative to LLVM 12 (base).

0

1

2

3

base

0.07 0.08

0.99

1.6

2.26

G
P

U
k
er

n
el

p
er

fo
rm

an
ce

re
la

ti
v
e

to
L

L
V

M
1

2

LLVM
Dev 0

(d) Performance of miniQMC relative to LLVM 12 (base).

Fig. 11: Performance evaluation for the four proxy applications (ref. Section V-A) on an NVDIA V100 GPU normalized to performance of LLVM 12. Values
over 1 indicate improvements and values below denote slowdowns. Our LLVM Dev branch (0) performance is marked explicitly as we restricted each plot to
the configurations that impact performance.

C. Performance Analysis

To evaluate the effect of the different optimizations we

measured the kernel time with various configurations that

enable only a subset at a time. The results are shown in

Figure 11, relative to the LLVM 12 baseline. CUDA results,

compiled with the same LLVM/Clang we used for OpenMP

experiments as well as with NVIDIA’s nvcc, are given as a

watermark, except for the OpenMP-only miniQMC kernel. The

numbers on top of the bars represent speedup over the LLVM 12

(base) performance. The performance of the LLVM Develop-

ment branch are indicated in each plot (LLVM Dev 0). The

globalization optimizations (heap-2-stack and heap-2-shared,

ref. Section IV-A) are together referred to as h2s2 for brevity.

Custom state machine generation (ref. Section IV-B) is denoted

as CSM and runtime call optimization (ref.Section IV-C) is

abbreviated by RTOpt. To keep the plots concise we only show

configurations of optimizations that triggered. In the following

results for each benchmark are discussed in detail.

XSBench compiled for OpenMP offloading with LLVM 12

took roughly twice as long as the CUDA alternative. By

disabling our explicit OpenMP optimizations in the LLVM De-

velopment branch this gap considerable diminished and

OpenMP reaches almost 80% of the CUDA performance.

We traced roughly 20% of the improvement to our changes in

LLVM/Clang implementing the simplified globalization scheme,

shown in Figure 4c, which replaced the complicated alterna-

tive (Figure 4b). While we are investigating the remaining

difference we expect at least some to be caused by generic

LLVM advances. With our explicit OpenMP optimizations the

performance drops to 1.53× of the LLVM 12 base. This is a

secondary effect caused by the replacement of runtime calls

with a constant value which shows the fragility of compiler

heuristics.

RSBench reached only 7.3% of CUDA performance when

compiled with LLVM 12. As described in Section IV-A,

we eliminated the erroneous and unconditional use of stack

memory in SPMD mode kernels as part of this work. Without

our OpenMP specific optimizations this caused increased

memory usage resulting in an out-of-memory (OOM) error, or,

with an increased heap-size (i.e. LIBOMPTARGET_HEAP_SIZE),

tremendous slowdowns. However, as heap-2-stack is applied

49

all 7 globalized variables are converted to stack locations

and performance soars to 97% of our watermark. Runtime

call optimization improves the result further causing the

LLVM Development branch with OpenMP offloading to reach

98% of the CUDA performance.

SU3Bench started out at 3% of the performance demon-

strated by the CUDA version. Disabling OpenMP optimiza-

tions showed a slowdown in parts caused by the simplified

globalization scheme. Successful application of heap-2-stack,

together with runtime call optimization and a custom state

machine, recovered most of that regression. As the kernel has

a very lightweight parallel region the overhead of any generic

mode execution would cause performance problems. However,

once SPMDzation was applied we observed a 10.8× speedup

over our baseline which brings the LLVM Development branch

performance to roughly a third of the CUDA version.

miniQMC exhibits a significant slowdown without our

optimizations caused by the missing coalescing in our simplified

globalization scheme. As heap-2-stack only triggers for a

fraction of the variables for now, it could only improve

performance slightly. Once heap-2-shared is enabled as well

the performance recovers to LLVM 12 levels. Using a runtime

call optimization and especially a custom state machine

without function pointer involvement will provide a 1.6×

speedup. Replacing the latter with SPMDzation increases this

improvement to 2.26×.

VI. CONCLUSION

In this work we presented a novel set of methods and

techniques for efficient execution of OpenMP on GPUs by

enhancing compiler-based optimization in LLVM. Specifi-

cally, our approach proposes novel inter-procedural semantic

analysis of OpenMP at the LLVM-IR level that enables key

transformations to optimize performance while preserving

correct execution, including memory placement optimizations,

SPMD mode execution, and constant folding of OpenMP

runtime function calls. Moreover, we expose the results of

analyses and optimizations to the developer, through compiler

optimizations remarks that provide actionable advice to improve

performance via source code changes. Results on a set of

scientific proxy application kernels show that our novel analyses

and optimizations significantly improve kernel execution time

compared to previous LLVM versions. With speedups up to

a factor of 13.35× we can often reduce the performance gap

compared to non-portable CUDA implementations considerably

while using generic GPU reasoning that applies to GPUs of

other vendors as well.

For future work, we plan to extend both semantic analysis

and data-flow analysis for OpenMP in LLVM to design and

implement more optimizations with the goal of achieving

parity with native kernel programming models. Specifically,

we intend to expand SPMD mode optimizations further using

kernel fusion techniques and optimize memory accesses through

coalescing techniques.

ACKNOWLEDGMENTS

Part of this research was supported by the Exascale Comput-

ing Project (17-SC-20-SC), a collaborative effort of two U.S.

Department of Energy organizations (Office of Science and

the National Nuclear Security Administration) responsible for

the planning and preparation of a capable exascale ecosystem,

including software, applications, hardware, advanced system

engineering, and early testbed platforms, in support of the

nation’s exascale computing imperative.

Part of this research was supported by the Lawrence Liver-

more National Security, LLC (“LLNS”) via MPO No. B642066.

We gratefully acknowledge the computing resources provided

and operated by the Joint Laboratory for System Evaluation

(JLSE) at Argonne National Laboratory.

This research used resources of the Oak Ridge Leadership

Computing Facility, which is a DOE Office of Science User

Facility supported under Contract DE-AC05-00OR22725.

This work was partially supported by LLNL under Contract

DE-AC52-07NA27344 (LLNL-CONF-826728) through the

LLNL-LDRD Program Project No. 21-ERD-018.

APPENDIX

A. Abstract

Our artifact provides the benchmarks used to evaluate the

inter-procedural OpenMP optimizations implemented for this

work. These benchmarks were evaluated using LLVM 12.0.1 as

the baseline against a development branch of LLVM containing

our changes with CUDA version 11.0. All but one of these

patches have landed upstream, so any build of LLVM containing

the commit hash 29a3e3dd7bed should be sufficient for

general testing. Evaluation was done on a single Nvidia V100

GPU node, only kernel time was considered for benchmarking

to measure the impact of our optimizations on the GPU.

B. Description

This artifact contains the benchmarks and some scripts to

build an OpenMP offloading compatible LLVM compiler. The

benchmarks are taken directly from their repositories and only

the build systems have been modified to build for V100 GPUs

with LLVM OpenMP offloading.

1) Artifact check-list:

• Algorithm: Inter-procedural optimization using OpenMP run-
time knowledge.

• Program: miniQMC, XSBench, RSBench, and SU3Bench
compiled with Clang.

• Compilation: Clang with OpenMP Nvidia offloading post
commit 29a3e3dd7bed. Approximately August 5th 2021.

• Transformations: OpenMP runtime call and general code
transformation.

• Hardware: Tests were run using an Nvidia V100 GPU, compute
capability sm_70 on a Linux system.

• Software: Tests were run using CUDA 11.0 for the and LLVM
release 12.0.1 with OpenMP offloading as the baseline compiler.

• Metrics: Results were measured as the total time spent in GPU
kernels via nvprof.

• How much time is needed to prepare workflow (approxi-
mately)?: A clean LLVM build should take under one hour.

• Publicly available?: Yes.

50

2) How to Access: Our benchmarks and associated helper

scripts for this artifact are available at the following link (https:

//doi.org/10.5281/zenodo.5791919).

3) Hardware Dependencies: Our benchmarks were run on

an Nvidia V100 GPU, whose compute capability is sm_70.

Running these tests will require a GPU accelerated system

with functional offloading via the CUDA RTL.

4) Software Dependencies: Building and running all the

benchmarks requires an up-to-date CUDA installation (We

used version 11.0), libelf, at least CMake version 3.17,

and a BLAS/LAPACK library in addition to the standard

dependencies for building LLVM listed at (https://llvm.org/

docs/GettingStarted.html#software).

C. Installation

We have provided a script to assist in building an OpenMP

offloading compatible version of the LLVM compiler that

contains our contributions. Running the script will attempt to

build a functioning compiler that supports OpenMP offloading.

We have included a script to build the baseline LLVM 12.0.1

release, and the version tested.

$./build_llvm.sh

$./build_llvm12.sh

If the build completed without errors, add the newly installed

compiler to your environment.

The scripts build.sh and run.sh are provided to build

and run the OpenMP offloading and CUDA versions for

each benchmark. The workflow can be modified to perform

individual tests.

To build the benchmarks, run:

$./build.sh

For a simple run of all benchmarks using nvprof run:

$./run.sh

D. Evaluation and Expected Results

The expected results should show improvements in execution

time compared to the LLVM 12.0.1 release for all applications.

Each build should also show remarks indicating which opti-

mizations were triggered. The optimizations triggered should

match those described in the paper except for SU3Bench, due

to the missing pull request that is in progress of upstreaming.

E. Experiment Customization

The experiments can be customized as we did using special

LLVM flags to disable certain features, these flags are:

• openmp-opt-disable-spmdization

• openmp-opt-disable-deglobalization

• openmp-opt-disable-state-machine-rewrite

• openmp-opt-disable-folding

Flags can be added to the Makefile for each benchmark, or

to the CMake configuration for miniQMC.

F. Notes

The SU3Bench evaluation done in the paper uses a patch that

has not landed yet, (https://reviews.llvm.org/D102107). This

means that the local variables will not be put in stack memory,

and will be placed in shared memory with HeapToShared. Some

results will vary because of the moving nature of LLVM.

REFERENCES

[1] S. Tian, J. Chesterfield, J. Doerfert, and B. M. Chapman, “Experience
Report: Writing a Portable GPU Runtime with OpenMP 5.1,” in
OpenMP: Enabling Massive Node-Level Parallelism - 17th International

Workshop on OpenMP, IWOMP 2021, Bristol, UK, September 14-16,

2021, Proceedings, ser. Lecture Notes in Computer Science, S. McIntosh-
Smith, B. R. de Supinski, and J. Klinkenberg, Eds. Springer, 2021.
[Online]. Available: https://doi.org/10.1007/978-3-030-85262-7 11

[2] D. Caballero, A. Duran, and X. Martorell, “An OpenMP* Barrier Using
SIMD Instructions for Intel® Xeon PhiTM Coprocessor,” in OpenMP

in the Era of Low Power Devices and Accelerators - 9th International

Workshop on OpenMP, IWOMP 2013, Canberra, ACT, Australia,

September 16-18, 2013. Proceedings, ser. Lecture Notes in Computer
Science, A. P. Rendell, B. M. Chapman, and M. S. Müller, Eds. Springer,
2013. [Online]. Available: https://doi.org/10.1007/978-3-642-40698-0 8

[3] E. Stotzer, A. Jayaraj, M. Ali, A. Friedmann, G. Mitra, A. P. Rendell,
and I. Lintault, “OpenMP on the Low-Power TI Keystone II ARM/DSP
System-on-Chip,” in OpenMP in the Era of Low Power Devices

and Accelerators - 9th International Workshop on OpenMP, IWOMP

2013, Canberra, ACT, Australia, September 16-18, 2013. Proceedings,
ser. Lecture Notes in Computer Science, A. P. Rendell, B. M.
Chapman, and M. S. Müller, Eds. Springer, 2013. [Online]. Available:
https://doi.org/10.1007/978-3-642-40698-0 9

[4] C. Bertolli, S. Antão, A. E. Eichenberger, K. O’Brien, Z. Sura, A. C.
Jacob, T. Chen, and O. Sallenave, “Coordinating GPU threads for
OpenMP 4.0 in LLVM,” in Proceedings of the 2014 LLVM Compiler

Infrastructure in HPC, LLVM 2014, New Orleans, LA, USA, November

17, 2014, H. Finkel and J. R. Hammond, Eds. IEEE Computer Society,
2014. [Online]. Available: https://doi.org/10.1109/LLVM-HPC.2014.10

[5] C. Bertolli, S. Antão, G. Bercea, A. C. Jacob, A. E. Eichenberger,
T. Chen, Z. Sura, H. Sung, G. Rokos, D. Appelhans, and K. O’Brien,
“Integrating GPU Support for OpenMP Offloading Directives into
Clang,” in Proceedings of the Second Workshop on the LLVM

Compiler Infrastructure in HPC, LLVM 2015, Austin, Texas, USA,

November 15, 2015, H. Finkel, Ed. ACM, 2015. [Online]. Available:
https://doi.org/10.1145/2833157.2833161

[6] E. Tiotto, B. Mahjour, W. Tsang, X. Xue, T. Islam, and W. Chen,
“OpenMP 4.5 Compiler Optimization for GPU Offloading,” IBM J.

Res. Dev., 2020. [Online]. Available: https://doi.org/10.1147/JRD.2019.
2962428

[7] S. F. Antão, A. Bataev, A. C. Jacob, G. Bercea, A. E. Eichenberger,
G. Rokos, M. Martineau, T. Jin, G. Ozen, Z. Sura, T. Chen, H. Sung,
C. Bertolli, and K. O’Brien, “Offloading Support for OpenMP in
Clang and LLVM,” in Third Workshop on the LLVM Compiler

Infrastructure in HPC, LLVM-HPC@SC 2016, Salt Lake City, UT,

USA, November 14, 2016. IEEE Computer Society, 2016. [Online].
Available: https://doi.org/10.1109/LLVM-HPC.2016.006

[8] Güray Özen, S. Atzeni, M. Wolfe, A. Southwell, and G. Klimowicz,
“Openmp GPU Offload in Flang and LLVM,” in 2018 IEEE/ACM 5th

Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC).
IEEE, 2018.

[9] J. M. Diaz, K. Friedline, S. Pophale, O. R. Hernandez, D. E. Bernholdt,
and S. Chandrasekaran, “Analysis of OpenMP 4.5 Offloading in
Implementations: Correctness and Overhead,” Parallel Comput., 2019.
[Online]. Available: https://doi.org/10.1016/j.parco.2019.102546

[10] J. H. Davis, C. S. Daley, S. Pophale, T. Huber, S. Chandrasekaran,
and N. J. Wright, “Performance Assessment of OpenMP Compilers
Targeting NVIDIA V100 GPUs,” in Accelerator Programming Using

Directives - 7th International Workshop, WACCPD 2020, Virtual

Event, November 20, 2020, Proceedings, ser. Lecture Notes in
Computer Science, S. Bhalachandra, S. Wienke, S. Chandrasekaran,
and G. Juckeland, Eds. Springer, 2020. [Online]. Available:
https://doi.org/10.1007/978-3-030-74224-9 2

51

https://doi.org/10.5281/zenodo.5791919
https://doi.org/10.5281/zenodo.5791919
https://llvm.org/docs/GettingStarted.html#software
https://llvm.org/docs/GettingStarted.html#software
https://reviews.llvm.org/D102107
https://doi.org/10.1007/978-3-030-85262-7_11
https://doi.org/10.1007/978-3-642-40698-0_8
https://doi.org/10.1007/978-3-642-40698-0_9
https://doi.org/10.1109/LLVM-HPC.2014.10
https://doi.org/10.1145/2833157.2833161
https://doi.org/10.1147/JRD.2019.2962428
https://doi.org/10.1147/JRD.2019.2962428
https://doi.org/10.1109/LLVM-HPC.2016.006
https://doi.org/10.1016/j.parco.2019.102546
https://doi.org/10.1007/978-3-030-74224-9_2

[11] J. Doerfert, J. M. M. Diaz, and H. Finkel, “The TRegion Interface
and Compiler Optimizations for OpenMP Target Regions,” in OpenMP:

Conquering the Full Hardware Spectrum - 15th International Workshop

on OpenMP, IWOMP 2019, Auckland, New Zealand, September 11-13,

2019, Proceedings, ser. Lecture Notes in Computer Science, X. Fan,
B. R. de Supinski, O. Sinnen, and N. Giacaman, Eds. Springer, 2019.
[Online]. Available: https://doi.org/10.1007/978-3-030-28596-8 11

[12] J. Doerfert and H. Finkel, “Compiler Optimizations for OpenMP,”
in Evolving OpenMP for Evolving Architectures - 14th International

Workshop on OpenMP, IWOMP 2018, Barcelona, Spain, September

26-28, 2018, Proceedings, ser. Lecture Notes in Computer Science,
B. R. de Supinski, P. Valero-Lara, X. Martorell, S. M. Bellido,
and J. Labarta, Eds. Springer, 2018. [Online]. Available: https:
//doi.org/10.1007/978-3-319-98521-3 8

[13] X. Tian, H. Saito, E. Su, A. Gaba, M. Masten, E. N. Garcia, and
A. Zaks, “LLVM Framework and IR Extensions for Parallelization,
SIMD Vectorization and Offloading,” in Third Workshop on the LLVM

Compiler Infrastructure in HPC, LLVM-HPC@SC 2016, Salt Lake City,

UT, USA, November 14, 2016. IEEE Computer Society, 2016. [Online].
Available: https://doi.org/10.1109/LLVM-HPC.2016.008

[14] X. Tian, H. Saito, E. Su, J. Lin, S. Guggilla, D. Caballero, M. Masten,
A. Savonichev, M. Rice, E. Demikhovsky, A. Zaks, G. Rapaport, A. Gaba,
V. Porpodas, and E. N. Garcia, “LLVM Compiler Implementation for
Explicit Parallelization and SIMD Vectorization,” in Proceedings of

the Fourth Workshop on the LLVM Compiler Infrastructure in HPC,

LLVM-HPC@SC 2017, Denver, CO, USA, November 13, 2017. ACM,
2017. [Online]. Available: https://doi.org/10.1145/3148173.3148191

[15] J. Lambert, S. Lee, J. S. Vetter, and A. D. Malony, “CCAMP: An
Integrated Translation and Optimization Framework for OpenACC and
OpenMP,” in Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, SC 2020,

Virtual Event / Atlanta, Georgia, USA, November 9-19, 2020, C. Cuicchi,
I. Qualters, and W. T. Kramer, Eds. IEEE/ACM, 2020. [Online].
Available: https://doi.org/10.1109/SC41405.2020.00102

[16] J. E. Denny, S. Lee, and J. S. Vetter, “CLACC: Translating OpenACC
to OpenMP in Clang,” in 2018 IEEE/ACM 5th Workshop on the LLVM

Compiler Infrastructure in HPC (LLVM-HPC). IEEE, 2018.
[17] G. F. Diamos, A. Kerr, S. Yalamanchili, and N. Clark, “Ocelot: A

Dynamic Optimization Framework for Bulk-Synchronous Applications
in Heterogeneous Systems,” in 19th International Conference on

Parallel Architectures and Compilation Techniques, PACT 2010,

Vienna, Austria, September 11-15, 2010, V. Salapura, M. Gschwind,
and J. Knoop, Eds. ACM, 2010. [Online]. Available: https:
//doi.org/10.1145/1854273.1854318

[18] R. Karrenberg and S. Hack, “Improving Performance of OpenCL on
CPUs,” in Compiler Construction - 21st International Conference, CC

2012, Held as Part of the European Joint Conferences on Theory

and Practice of Software, ETAPS 2012, Tallinn, Estonia, March

24 - April 1, 2012. Proceedings, ser. Lecture Notes in Computer
Science, M. F. P. O’Boyle, Ed. Springer, 2012. [Online]. Available:
https://doi.org/10.1007/978-3-642-28652-0 1

[19] S. Moll, J. Doerfert, and S. Hack, “Input space splitting for OpenCL,”
in Proceedings of the 25th International Conference on Compiler

Construction, CC 2016, Barcelona, Spain, March 12-18, 2016, A. Zaks
and M. V. Hermenegildo, Eds. ACM, 2016. [Online]. Available:
https://doi.org/10.1145/2892208.2892217

[20] J. Doerfert and H. Finkel, “Compiler Optimizations for Parallel
Programs,” in Languages and Compilers for Parallel Computing - 31st

International Workshop, LCPC 2018, Salt Lake City, UT, USA, October

9-11, 2018, Revised Selected Papers, ser. Lecture Notes in Computer
Science, M. W. Hall and H. Sundar, Eds. Springer, 2018. [Online].
Available: https://doi.org/10.1007/978-3-030-34627-0 9

[21] J. Huber, “CGO2022 Artifact Archive,” 2021. [Online]. Available:
https://doi.org/10.5281/zenodo.5791919

[22] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee,
and K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous
Computing,” in Proceedings of the 2009 IEEE International Symposium

on Workload Characterization, IISWC 2009, October 4-6, 2009,

Austin, TX, USA. IEEE Computer Society, 2009. [Online]. Available:
https://doi.org/10.1109/IISWC.2009.5306797

[23] P. K. Romano, N. E. Horelik, B. R. Herman, A. G. Nelson, B. Forget, and
K. Smith, “OpenMC: A State-of-the-Art Monte Carlo Code for Research
and Development,” Annals of Nuclear Energy, 2015, joint International
Conference on Supercomputing in Nuclear Applications and Monte
Carlo 2013, SNA + MC 2013. Pluri- and Trans-disciplinarity, Towards
New Modeling and Numerical Simulation Paradigms. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S030645491400379X

[24] J. R. Tramm, A. R. Siegel, T. Islam, and M. Schulz, “XSBench -
The Development and Verification of A Performance Abstraction for
Monte Carlo Reactor Analysis,” The Role of Reactor Physics toward a

Sustainable Future (PHYSOR), 2014.
[25] J. R. Tramm, A. R. Siegel, B. Forget, and C. Josey, “Performance

Analysis of a Reduced Data Movement Algorithm for Neutron Cross
Section Data in Monte Carlo Simulations,” in EASC 2014 - Solving

Software Challenges for Exascale, Stockholm, 2014. [Online]. Available:
https://doi.org/10.1007/978-3-319-15976-8 3

[26] C. DeTar, S. Gottlieb, R. Li, and D. Toussaint, “MILC Code Performance
on High End CPU and GPU Supercomputer Clusters,” in EPJ Web of

Conferences. EDP Sciences, 2018.
[27] J. Kim, A. D. Baczewski, T. D. Beaudet, A. Benali, M. C. Bennett, M. A.

Berrill, N. S. Blunt, E. J. L. Borda, M. Casula, D. M. Ceperley et al.,
“QMCPACK: an open source ab initio quantum Monte Carlo package
for the electronic structure of atoms, molecules and solids,” Journal of

Physics: Condensed Matter, 2018.

52

https://doi.org/10.1007/978-3-030-28596-8_11
https://doi.org/10.1007/978-3-319-98521-3_8
https://doi.org/10.1007/978-3-319-98521-3_8
https://doi.org/10.1109/LLVM-HPC.2016.008
https://doi.org/10.1145/3148173.3148191
https://doi.org/10.1109/SC41405.2020.00102
https://doi.org/10.1145/1854273.1854318
https://doi.org/10.1145/1854273.1854318
https://doi.org/10.1007/978-3-642-28652-0_1
https://doi.org/10.1145/2892208.2892217
https://doi.org/10.1007/978-3-030-34627-0_9
https://doi.org/10.5281/zenodo.5791919
https://doi.org/10.1109/IISWC.2009.5306797
https://www.sciencedirect.com/science/article/pii/S030645491400379X
https://doi.org/10.1007/978-3-319-15976-8_3

	Introduction
	Background
	Related Work
	OpenMP-Aware LLVM-IR Analyses and Optimizations
	Optimizing Variable Placement
	Optimizing Thread Execution
	Contributions
	Eliminating Function Pointers in the If-Cascade.
	Expanding the Scope and Efficiency of SPMDzation.

	Optimizing OpenMP Runtime Calls
	Compiler Remarks and User Assumptions

	Evaluation
	Benchmarks
	Optimization Opportunities
	Performance Analysis

	Conclusion
	Appendix
	Abstract
	Description
	Artifact check-list
	How to Access
	Hardware Dependencies
	Software Dependencies

	Installation
	Evaluation and Expected Results
	Experiment Customization
	Notes

	References

