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Abstract. In this paper, we introduce a novel approach to support con-
current offloading for OpenMP tasks based on hidden helper threads.
We contrast our design to alternative implementations and explain why
the approach we have chosen provides the most consistent performance
across a wide range of use cases. In addition to a theoretical discussion
of the trade-offs, we detail our implementation in the LLVM compiler
infrastructure. Finally, we provide evaluation results of four extreme
offloading situations on the Summit supercomputer, showing that we
achieve speedup of up to 6.7× over synchronous offloading, and provide
comparable speedup to the commercial IBM XL C/C++ compiler.
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1 Introduction

Parallel programming is here to stay. In fact, the number of compute cores con-
figured per platform continues to grow, and many of them are in the form of
accelerators. GPUs are the most common type of accelerator in modern super-
computers; on some recent systems, multiple GPUs are present on a single node.
As most of the computational power is within them, it is imperative for perfor-
mance (per watt) to keep the GPUs occupied with productive work at all times.
A meaningful approach is to perform as many computations as possible simul-
taneously [10,12]. Even NVIDIA Fermi GPUs, which have been on the market
for ten years, allow for concurrent execution of up to 16 GPU kernels on a single
device. Asynchronous offloading is a promising technique to achieve such con-
currency as it allows a single CPU thread to overlap memory movement, GPU
computation, and the preparation of new GPU tasks on the CPU. Costly stalls
between GPU computations, aka. kernels, are avoided and the hardware can
start the execution of an already prepared kernel as soon as the ones currently
executed stop utilizing the entire device.

The OpenMP standard supports asynchronous offloading since version 4.5,
though compiler support still varies. In OpenMP, computations are mapped to
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#pragma omp target depend (...) map (...) ... nowait
{ ... }

Fig. 1: Generic target directive with task parts, e.g., the depend and nowait

clause, offloading parts, e.g., the map clause, and other clauses such as shared.

accelerators via target directives such as the one sketched in Fig. 1. The state-
ment following the directive is called the target region and the task created by
the directive is called a deferred target task . Similar to other tasks, dependences
can be specified with the depend clause and asynchronous execution can be per-
mitted with the nowait clause. The map clause can be used to ensure memory
regions are mapped between the host and the device. Depending on the situation
and the clause arguments this can result in memory allocation, copies, deallo-
cation, or none of these. While we describe the necessary semantics, we refer to
the OpenMP standard for details and additional information.

In this paper we propose, compare, and evaluate a new scheme to implement
the nowait clause on target directives to achieve concurrent offloading. It is
designed to provide good performance regardless of the context. Our approach
utilizes otherwise “hidden” helper threads to provide consistent results across
various use cases. In Section 2.2 we introduce several possible implementations
and compare them from a theoretical perspective. We discuss the implementation
of our hidden-helper-thread design as part of the LLVM compiler in Section 3,
before providing an evaluation of its behavior for four extreme offloading cases in
Section 4. Our results show the hidden-helper-thread design gains up to 6.7× im-
provement on Summit supercomputer, and also provides comparable speedup to
the commercial IBM XL C/C++ compiler. We discuss related work in Section 5
and conclude with ideas for improvement in Section 6.

2 Design Discussion

In order to discuss different implementation designs for deferred target tasks, we
first dissect one and identify its semantic steps. As part of the overall strategy
it is important to determine which thread will execute each step, as that is a
fundamental property of the design. Based upon this mapping of responsibilities,
it is possible to reason about the performance potential of a given scheme in
various scenarios without implementing all schemes and evaluating all scenarios.

1. wait for outstanding dependences
2. copy requested memory to the device
3. execute the target region on the device
4. copy requested memory from the device
5. resolve outgoing dependences

Fig. 2: Breakdown of the semantic parts, or
sub-tasks, of a deferred target task .

The steps taken to execute a
deferred target task are shown in
Fig. 2. The first step is to resolve
outstanding dependences, that is,
wait for completion of previously
generated sibling tasks that the
target task depends on. Next, the
memory regions are copied from
the current, or issuing, device to
the target device as specified by the map clauses. In step three, the associated
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target region is executed on the target device 3. Afterwards, memory is copied
back from the target device to the issuing device, again as specified by the map

clauses. Finally, dependences are marked as resolved such that dependent tasks
are now allowed to proceed. While these semantic steps could potentially be
overlapped, they have to appear as-if they are performed in this order.

2.1 Considered Designs

We considered three designs that we describe here and compare in Section 2.2.

Regular Task In the regular-task design, the “task part” of the target directive
is executed as if it was a regular, undeferred OpenMP task. A potential lowering
of the generic deferred target task from Fig. 1 is shown in Fig. 3. As with other
regular OpenMP tasks there is a binding to the encountering team, so that a
thread from the encountering team will eventually execute the task. That thread
will execute all five of the steps listed in Fig. 2, thus allowing the encountering
thread to continue execution immediately after creating the regular OpenMP
task. The regular task design is the easiest to implement and understand. How-
ever, it may not yield the desired result, namely asynchronous offloading, if there
is no surrounding parallel region, or if the threads in the surrounding parallel
region are busy and not able to pick up additional tasks.

#pragma omp task shared (...) depend (...) ...
#pragma omp target map (...) ...
{ ... }

Fig. 3: The target directive from Fig. 1 implemented in the regular-task design.
The “task part” of the deferred target task becomes a regular, undeferred task.

Detachable/Callback-Task The detachable-task design exploits semantics
similar to the detach clause in combination with asynchronous calls to the na-
tive device runtime. Fig. 4 visualizes this approach using a custom native async
clause. The idea is that the native device runtime, e.g., the CUDA driver, allows
the queuing of events, memory copies, and launch kernels. The encountering
thread can therefore set the first four steps shown in Fig. 2 in motion without
waiting for any of them to complete. In practice, the fifth step can also be sched-
uled by providing a callback function for the native runtime to invoke once all
prior steps have completed. The callback will fulfill the event associated with the
detach clause and thereby, most likely, also perform the work associated with re-
solving dependences. That means that the encountering thread issues the work,
and a thread of the native runtime will handle everything else, especially the
last step. Consequently, if the native runtime is rich enough and has sufficient
threads to perform the (last) step, concurrent offloading is possible regardless of
the context.
3The fallback case, execution on the issuing device, is sufficiently similar.
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#pragma omp target depend (...) map (...) ... \
detach(native_async_calls_done) native async

{ ... }

Fig. 4: The target directive from Fig. 1 implemented in the detachable-task de-
sign. Asynchronous calls to the native device runtime are used to issue the sub-
tasks (see Fig. 2) including a host callback that will fulfill the allow-completion-

event associated with the detach clause.

Hidden Helper Task In the hidden-helper-task design, a deferred target task is
executed in its entirety by a thread that is not started by nor (in any language-
defined way) visible to the user. These hidden-helper-threads form a team of
threads that is implicitly created at program start and is only responsible for
the execution of the special hidden-helper-tasks. We denote them in our code as
hht_task. Such tasks are not too different from other deferred OpenMP tasks
except that they are always executed by an implicit hidden-helper-thread . It
is especially important that they participate in the dependence resolution like
any other tasks generated by the encountering thread. Thus they are siblings to
tasks generated by threads in the same team as the encountering thread. The
hht_task concept is not tied to deferred target tasks but could help the definition
or extention of the OpenMP specification (see Section 6). Fig. 3 shows how the
generic deferred target task from part 1 is executed in this design.

#pragma omp hht_task shared (...) depend (...) ...
#pragma omp target map (...) ...
{ ... }

Fig. 5: Conceptual lowering of the target directive from Fig. 1 in the hidden-
helper-thread design. A special hht_task is used and executed by an hidden-

helper-thread while the offload part is made synchronous.

2.2 Design Comparison

While all three schemes can result in concurrent execution of asynchronous of-
floading regions, they differ in complexity, extensibility, requirements, and prob-
ably performance. The regular task design is easy to implement, potentially
even without compiler support, but it will fail to achieve the goal if there are
no threads available to perform the offloading concurrently. Under ideal circum-
stances it can be expected that this scheme is similar to the design of hidden-
helper-thread , though the required setup, e.g., an explicit parallel region with
idle threads, is unrealistic and restrictive. The detachable task design can be ex-
pected to provide consistently good results under most circumstances. It could
potentially be worse than the hidden-helper task design if the time taken by
the encountering thread to issue asynchronous calls becomes the bottleneck or
if the native runtime thread is otherwise needed while it resolves the depen-
dences. However, those situations would only occur if the tasks are very small
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or the number of native runtime threads is too low. Moreover, the setup of the
hht_task is not free either and the use of additional threads and task incurs over-
head as well. There are more likely problems with the detachable task design
though. For one, the scheme can become complex when dependences between
host and target tasks are present. While one could resolve host task depen-
dences as part of the setup, thus stalling the encountering thread until they are
resolved, it would defeat the purpose. Using artificial host tasks to do the setup
introduces the same problems as the regular task design; using extra threads is
not much different from our proposed third design, but more complex for yet-to-
be-determined gains. Finally, only the hidden-helper task design is generic and
reusable. It puts no requirements on the native runtime, nor is the scheme tied
to target offloading. That said, it is very likely that our scheme would benefit
from resolving dependences directly on the device.

3 Implementation

To ensure concurrent execution of target tasks in every situation we need to
augment the LLVM OpenMP runtime in two places: (1) we added hidden-helper-
threads to which the execution of target tasks can be deferred, and (2) we utilize
native device runtime features to offload multiple target tasks at the same time.
In this section, we first introduce the key implementation details for hidden
helper tasks and the hidden helper task team, before we discuss the support for
concurrent task execution using multiple streams. Finally, we present the new
dependence process mechanism.

3.1 Hidden Helper Task

In our design, a target nowait directive will be wrapped into a hidden-helper-
task, which is a special OpenMP task that can only be executed by a hidden-
helper-thread . In this section, we will introduce the allocation and synchroniza-
tion of a hidden-helper-task. The execution will be discussed in Section 3.2.

Allocation When the encountering thread TE reaches a hidden helper task
th, it registers th as a child by incrementing the child task counter and it also
increments the number of unfinished hidden helper tasks of its team. Then TE

enqueues th in the task queue of a hidden helper thread chosen based on TE ’s
global thread id. This selection ensures that hidden helper tasks are distributed
evenly if they are encountered by multiple threads at the same time. Finally, TE

increases a semaphore SH which we will discuss in Section 3.2. Once the task is
finished, the children and unfinished task counters will be decreased by one.

Synchronization The synchronization of hidden helper tasks follows the rules
of regular OpenMP tasks. They can be synchronized explicitly via a taskwait
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directive or implicitly at the end of a parallel region. For the explicit synchro-
nization, the encountering thread TE waits until the number of unfinished child
tasks is zero. The implicit synchronization happens before the master thread of
the team spawned by the parallel directive leaves the parallel region and con-
tinues execution of the succeeding statement. The master thread will first wait
for all unfinished hidden helper tasks created by its team to complete.

3.2 Hidden Helper Thread Team

The hidden helper thread team is a special OpenMP team that, similar to the
implicit initial team, exists at program start. It is not connected to the implicit
initial team. The size of the hidden helper thread team, denoted by NH , defaults
to 8 in our implementation. It can be configured via an environment variable.
This might be necessary based on the kernel sizes and hardware capabilities, e.g.,
if NH = 8 threads fail to offload sufficient work while there is more available,
the size should be increased. Just as with a regular team, the hidden helper
thread team is implemented using a fork-join model. To avoid overheads when
the feature is not used, the team is only initialized when the first hidden helper
task is encountered.

The encountering thread TE first creates a new thread TH using the native
host threading API. Note that TH is not related to any other regular OpenMP

threads but is similar to the initial thread that exists at the start of program
execution. We call thread TH the master thread of the hidden helper thread
team. This new thread creates NH − 1 hidden helper threads using the same
facilities that other newly created OpenMP teams would use. That means, the
TH is not connected to the existing team structure but the hidden helper thread
team is itself a regular OpenMP team. TE is allowed to proceed only after the
new team has been initialized and is ready to accept tasks.

While the team behaves like a regular one, the hidden helper threads are set
up slightly differently from regular OpenMP threads. A regular OpenMP worker
thread (in the LLVM OpenMP runtime) keeps looping with the expectation that
one hardware thread is allocated to it. It is optimized for fast reaction time, so
once a regular OpenMP task is encountered by its team the worker thread can
pick it up and execute it right away. In contrast, it is crucial that hidden helper
threads do not occupy host resources if they are not used. Assuming the host is
fully utilized by regular OpenMP threads, there are no CPU cycles left for the
hidden helper threads to use. In order to avoid contention, the hidden helper
threads immediately block on the semaphore SH after their setup is complete.
Whenever a new hidden helper task is enqueued, SH is incremented and at least
one hidden helper thread is woken up to execute the task. After the execution
is finished, the thread will block itself on SH and wait to be woken again.

Like regular OpenMP threads, hidden helper threads use a work-stealing
strategy to find suitable tasks. A hidden helper thread first checks whether there
are tasks in its own queue. If so, it will take one and execute it; otherwise, the
thread will try to steal from other thread queues by sweeping over all others in
its hidden helper thread team.
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3.3 Stream Manager

Steps 2–4 in Fig. 2 show how the host interacts with a target device via the native
device runtime. These runtimes usually accept a queue-like data structure that
we call a stream4 in this paper, as a parameter to which the corresponding
operations are pushed. Operations in the same stream are executed in the issued
order; operations in different streams can be executed concurrently if there are no
synchronizing events. As a result, if we want to run multiple tasks concurrently,
we must use multiple streams.

We implemented a stream manager which can efficiently arbitrate concurrent
requests for streams. Initially, a stream pool containing K streams is created.
The size K is configurable via an environment variable and defaults to 32. For
each target device operation, e.g., a host to device memory copy or a kernel
offload, a new stream is requested from the stream manager. On request, the
last used available streams in the pool can be “borrowed”. If all streams in the
pool have been borrowed, the stream manager will double the pool size to create
fresh streams that can be handed out. Once a user is finished with a stream, it
returns it to the stream manager such that it can be reused.

Since the target region can be only executed after the required data is copied
to the device, and outgoing dependence resolution can only be started after data
is copied back to the issuing device, Steps 2–4 in Fig. 2 are in fact implicitly
dependent. Given this fact, we optimize the target operations in the following
way: all operations for the same target task use the same stream. In addition, all
synchronous operations are replaced by their asynchronous counterparts, with a
single synchronization performed at the end of Step 4. In this way, the OpenMP

runtime library does not need to wait for an operation to finish before issuing
the next one. But it will register them all directly with the native runtime, al-
lowing for potential concurrency during memory transfers in the future. Even
for non-detachable target tasks, this synchronization scheme can reduce over-
heads compared with the use of multiple synchronous operations. Finally, it is
worth noting that the stream manager alone already allows multiple threads to
concurrently offload independent operations.

3.4 Processing Dependences

The dependences of a regular OpenMP task are resolved and processed on
the host side. If the dependences of a task are not fulfilled, the task will not be
enqueued, which implies that a target task will also not be enqueued, dispatched
and executed if the tasks it depends on are not finished, no matter whether they
are regular tasks or target tasks. However, almost all device runtime libraries
support a more efficient way to process dependences via device-dependent events.
The host side no longer is involved, and all a target task’s successors whose
dependences have been resolved can be enqueued for dispatch and execution.

4This is CUDA terminology, but almost all heterogeneous programming models have
a similar concept, such as the command queue in OpenCL.
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The native device dependence resolution works as follows. A fulfill operation
is put into the stream S such that it is executed after all operations enqueued
to S before. A wait operation is added to stream S′, which can be S, to ensure
operations enqueued into S′ afterward are stalled until the matching fulfill op-
eration in S was executed. It is worth noting that the fulfill and wait operations
are put into the stream without blocking the issuing thread.

In our approach, we perform dependence processing on the target device.
Assume a target task t depending on m tasks {td1

, · · · , tdm
}. For each task tdi

:

– If tdi
is a regular task: add t to tdi

’s successor list, and increment t’s counter
of predecessors npredecessors. This is same as the existing mechanism.

– If tdi
is a target task: add tdi

to t’s predecessor list.

In this way, if the npredecessors of a task is not zero, the task depends on
unfinished regular tasks. All tasks in the predecessor list are target tasks and
will be processed on the device side.

When t is started, it first checks whether its npredecessors is zero. If yes,
the current task yields because target device events can not tackle dependences
on regular tasks. After that, for each task t′ in t’s predecessor list, if t and t′

are on the same type of devices, insert a wait for t′’s event to t’s stream. This
approach does not work if t and t′ are not on the same type of devices. Two
target tasks are not on the same type of devices if they are not using the same
set of device runtime interfaces. In that case, t will take a check-and-yield: check
the status of t′’s event; if the event is not fulfilled, t will yield its execution. After
all dependences are processed, t proceeds to its remaining offloading work, such
as data mapping and kernel launch.

The hidden-helper-thread executing hidden-helper-tasks will wait for the tar-
get parts (Step 2-4 in Fig. 2) before proceeding to Step 5 to make sure that this
dependence process can also work when a host task depends on a target task.

4 Evaluation

We performed experiments with four synthetic benchmarks described in the
following to show performance gained by asynchronous offloading with Hidden
Helper Threads (HHT) over vanilla LLVM. We additionally compare the proto-
type to the implementation in the commercial IBM XL C/C++ compiler (XLC)
by measuring the speedup of asynchronous offloading (with nowait) over syn-
chronous offloading (without nowait).

4.1 Benchmarks

The benchmark functions B1, B2, B3, and B4 contain the timed code parts. B1,
B2, and B3 each consists of a target nowait directive, and B4 consists of four
target nowait directives with depend clauses. In the target region a daxpy-like
computation is performed on vectors of length N, as shown below. Outer data
mapping, which is not shown in the paper, is used such that data is transferred
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only once in each benchmark. The benchmarks are designed to be extreme in-
stances of potential real world situations.

#define C(a, X, Y, N) \
for (int i = 0; i < N; ++i) \

for (int j = 0; j <= i; ++j) \
y[i] = y[i] + a * x[j];

inline void K(double a, double *X, double *Y, int N) {
#pragma omp target teams distribute parallel for simd nowait

C(a, X, Y, N);
}

B1: Single-threaded asynchronous offloading, no parallel region

In benchmark B1, a single thread issues the T asynchronous offloading requests
before it waits for all of them to finish. A situation like this can arise if an
application with independent parallel loops is ported to an accelerator. Exist-
ing omp parellel for simd are replaced with the omp target teams distribute

parallel for simd nowait pragma.

void B1(double a, double *X, double *Y, int T, int N) {
for (int t = 0; t < T; ++t)

K(a, X, Y, N);
#pragma omp taskwait
}

B2: Multi-threaded asynchronous offloading inside a parallel region

In benchmark B2, all threads created by an outer parallel region issue the T

asynchronous offloading requests. Note that the encountering thread can only
finish the parallel region once all offloading requests have completed. One can
imagine an implicit omp taskwait at the end of the parallel region. A situation
like this can arise if an application utilizes multiple host threads for offloading
onto the same (set of) devices.

void B2(double a, double *X, double *Y, int T, int N) {
#pragma omp parallel for

for (int t = 0; t < T; ++t)
K(a, X, Y, N);

}

B3: Single-threaded asynchronous offloading inside a parallel region

In benchmark B3, the master thread of an outer parallel region issues the T asyn-
chronous offloading requests. Note that the other threads created by the parallel
region do not participate in the offloading and will be busy (waiting) until all
offloading requests have finished. A situation like this can arise if an application
utilizes some host threads for offloading while others perform unrelated tasks,
e.g., work on the host or offloading to other devices.
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void B3(double a, double *X, double *Y, int T, int N) {
std:: atomic_bool done(false);

#pragma omp parallel
{

if (omp_get_thread_num () == 0) {
B1(a, X, Y, T, N);
done.store(true);

} else {
while (!done.load ())

;
}

}
}

B4: Single-threaded asynchronous offloading with dependences

In benchmark B4, a single thread issues four asynchronous offloading tasks in
each loop iteration. Task 2 and 3 depend on task 1, and task 4 depends on task
2 and 3. Task 2 and 3 are mutually independent, therefore they can be running
concurrently. A situation like this can arise if an application with parallel loops
is ported to an accelerator and multiple such loops are offloaded concurrently to
improve the overall performance.

#define TARGET_NOWAIT \
#pragma omp target teams distribute parallel for simd nowait

void B4(double a, double *X, double *Y, int T, int N) {
for (int t = 0; t < T; ++t) {

// Hidden helper task 1
TARGET_NOWAIT depend(in: x[0:N]) depend(inout: y[0:N])

C(a, X, Y, N);
// Hidden helper task 2, depending on task 1
TARGET_NOWAIT depend(inout: x[0:N])

C(a, X, X, N);
// Hidden helper task 3, depending on task 1
TARGET_NOWAIT depend(inout: y[0:N])

C(a, Y, Y, N);
// Hidden helper task 4, depending on task 2 and 3
TARGET_NOWAIT depend(in: x[0:N]) depend(inout: y[0:N])

C(a, X, Y, N);
}

#pragma omp taskwait
}

4.2 Configurations

We run our experiments with 13 different vector sizes, and four different number
of offloading jobs. The vector size, determined by N, is one of 24, 25 − 1, 26,
27−1, 28, 29−1, 210, 211−1, 212, 213−1, 214, 215−1, and 216. We choose seven
powers of two as well as six values between them. The number of offloading jobs,
determined by T, is one of 24, 26, 28, and 210.
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4.3 Systems and Versions

All experiments were executed on the Summit supercomputer at Oak Ridge
National Laboratory [2]. Each Summit node contains two IBM POWER9 pro-
cessors and six NVIDIA Volta V100 GPUs.

We implemented out prototype on top of LLVM d8c35031. Since parts of our
work have already been merged into the trunk of LLVM, in order to demonstrate
our complete approach, the vanilla LLVM was obtained by removing the related
changes from d8c35031. All variants of LLVM were built with GCC 7.4.0. For
comparison, we use IBM XL C/C++ V16.1.1 (5725-C73, 5765-J13) loaded by
default on Summit. CUDA 10.1.243 was used by all configurations.

All benchmarks were compiled with flags -std=c++14 -O2. We used one re-
source set, which has 42 CPU cores and one GPU, per execution. Each config-
uration was executed 30 times and the execution times were averaged. We ran
the experiments using the following command:

jsrun --smpiargs="-disable_gpu_hooks" --nrs=1 \
--tasks_per_rs =1 --cpu_per_rs =42 --gpu_per_rs =1 \
--rs_per_host =1 --bind=rs PROGRAM

4.4 Results
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Fig. 6: Speedup of concurrent execution with hidden-helper-threads compared to
vanilla LLVM for the benchmarks B1 ( ), B2 ( ), B3 ( ) and B4 ( ) described

in Section 4.1

Comparison with Vanilla LLVM Fig. 6 shows the speedup of concurrent
execution with our implementation. We can see in all cases that speedup first
increases with vector length N (kernel size), starts to decrease after a certain
point, and finally levels off. This is to be expected, because at the beginning
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when N is small, multiple concurrent target tasks cannot fully utilize the GPU.
The extra overhead of the target tasks cancels out the small improvement in
execution time. As N grows, we start to observe the improvement in execution
time resulting from overlapping execution. At the point when a single target
tasks saturates the GPU alone, the speedup decreases with the ratio of the
target task execution time that is executed concurrently with other target tasks.
Given large enough target tasks a speedup of 1 is expected.

We also note that the maximum speedup increases with T (number of target
tasks). With increasing values of T the amount of time spent in the less concur-
rent warm-up and tear-down stages of the pipeline decreases relatively to the
overall execution time, thus allowing for larger speedups.

Both B1 and B3 show significant performance improvement (up to 6.7×) in
all configurations, while B2 and B4 exhibit degradation for small tasks and minor
gains for larger values of N . This is to be expected, because B2 contains multi-
threaded offloading inside a parallel region. Even without the nowait clause,
there are 168 threads (on Summit, each physical core supports four hardware
threads) issuing offload requests almost at the same time. The implementation
of the nowait clause introduces indirection through the hidden-helper-thread ,
which increases host-side overheads (for task allocation, scheduling, and task
yield) that are not incurred when issuing multiple tasks directly from different
native OpenMP threads. Here, the performance gain from introducing multiple
streams is offset by the extra overheads of using a deferred target task when
the kernel size is very small. In this case, the modest amount of time spent in
kernel execution does not allow us to benefit from dispatching them into multiple
streams. For B4, there are at most two concurrent tasks (2 and 3), and they can
finish before they get a chance to run at the same time when N is very small.
As a result, similar to B2, the extra overheads degrade performance.

Comparison with IBM XL C/C++ Compiler IBM XLC can generate
very efficient kernels compared with LLVM (up to 50x performance gap with
benchmarks in this paper), a lightweight configuration (smaller N) for XL can
be heavy for LLVM. We are still exploring the reasons for this, but LLVM’s
register file usage on GPUs appears to be highly inefficient and could be a
leading contributor. Since a direct comparison does not make sense given the
above performance difference, we instead compare the speedup of pairs of kernels
that have approximately the same average execution time.

Fig. 7 shows the speedup of asynchronous offloading over synchronous offload-
ing using our prototype (HHT) and IBM XLC in different benchmarks (B1-4)
and for different T (number of offloading jobs). We see that our HHT outper-
forms XL in B2, although there is performance degradation from both HHT and
XL when the kernel execution time is short, as discussed above. However, when
the kernel size is large enough, HHT improves performance considerably while
XL cannot provide any improvement. We think this can be attributed to the use
of hidden helper threads. For XL, we observe from the NVIDIA Visual Profiler
(NVVP) [8], that when executing B1 and B3, only one host thread is interacting
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Fig. 7: Comparison between the speedup using our prototype ( ) and IBM XLC
( ) in different benchmarks (B1-4) and T (number of offloading jobs). The aver-
age execution time is the total time of T target tasks executing serially divided

by T .
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with the CUDA runtime, which indicates that the offloading may be performed
by the encountering threads. As a result, aside from the extra overhead intro-
duced to support nowait, XL can at most get same performance as synchronous
offloading in B2. In our approach, only eight hidden-helper-threads were issuing
offloading requests, which has less resource contention and better cache locality
compared with synchronous version.

For B1, B3, and B4, HHT can get speedup comparable with XL, even though
generally it is slightly below that of XL. We expect this is due to weaknesses
in LLVM’s current kernel generation process. From the log shown from ptxas,
which is the PTX assembler provided by NVIDIA [7], the kernel generated by
IBM XL uses 32 registers, while the LLVM code uses 40 registers. The number of
registers a thread block uses determines how many thread blocks can be resident
on a multiprocessor [6]. In the LLVM version, fewer thread blocks will run on a
multiprocessor at the same time, reducing the maximal concurrency.

Most important, our design provides more functionalities and it can be used
even if the native runtime has no asynchronous offloading capabilities.

5 Related Work

OpenMP 4.0 provides mechanisms to offload regions of code to accelerators,
and adds support for asynchronous offloading since version 4.5. Antao et al. [1]
introduces an OpenMP offloading implementation to LLVM. For now it supports
offloading to X86 64, AArch64, PPC64[LE], and has basic support for CUDA
devices [3]. As regards support for the asynchronous offloading (nowait clause),
Clang currently emits a corresponding function call but the function just calls the
synchronous version, so that this feature is not supported. One key contribution
of this paper is to propose a scheme to implement the nowait clause in LLVM.

GCC introduced support for offloading to the Intel R© Xeon PhiTM from ver-
sion 5, and support for the first GPU target, NVIDIA NVPTX, is introduced
in GCC 7 [9]. Asynchronous offloading is not yet provided in GCC. It does not
fall back to the synchronous version and therefore a program with nowait clause
currently cannot run at all. Hence we were unable to provide a comparison. In
the commercial space, the IBM R© XL C/C++ V16.1.1 compiler fully supports
OpenMP 4.5 [4], including asynchronous offloading.

Several papers investigate performance improvements by introducing concur-
rent offloading task/kernel execution with different programming models. Jiao
et al. [5] validated the benefits of concurrent kernels for energy-efficient execu-
tion with CUDA. Wen et al. [11] proposed a graph-based algorithm to optimize
OpenCL concurrent kernel execution. To the best our knowledge, this is the first
paper investigating the concurrent execution of OpenMP target tasks.

6 Conclusions and Future Work

In this work we introduced support for concurrent execution of OpenMP target
task, and discussed different designs for asynchronous offloading and evaluated
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our implementation on four extreme offloading situations against vanilla LLVM
and IBM XL C/C++ compiler on the Summit supercomputer. Our results show
that the hidden-helper-thread design can provide low-overhead, concurrent of-
floading of OpenMP target regions without support from the underlying native
runtime. In addition, the proposed design can be a stepping stone towards other
“free”, “unshackled”, or “non-team-bound” tasks, both in terms of implemen-
tation as well as design. Our next step is to improve the execution efficiency of
kernels. A promising candidate approach is to reduce register usage in LLVM
(see Section 4.4) by optimizing the device runtime library such that it can drop
some parts if the kernel does not require those features.
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